MaplePrimes Questions

Im trying to plot the graph of g := int(exp(-epsilon(x^4+x^2)), x = -10 .. 10), i want to see how the value of the integrand will change as we let epsilon tend towards infinity, but I am struggling to find a way to do this. Any help would be greatly appreciated.

So I have got the following integral:

Int((2*z+1)/(z-5)(z-1)^2,z)

around the square with corners 2, 2i, -2, -2i oriented counter-clockwise.

Do I need to tell Maple that z is complex? Do I need to manually parametrize z? Is Maple aware of Cauchy's theorem?

What is the quickest way of evaluating this sort of integrals.

I'm still a maple beginner and looking for a workable solution to the following problem. I have already solved these "by hand" and would now like to control them.

The following equation should be solved:

diff(u(x, t), t, t)-c^2*(diff(u(x, t), x, x))

The approach function would be for example:

u := a(x)*sin(k1*(-c*t+x))

It would be great if maple could give me the solution again in this example:

solution = -c^2*(d^2*a*sin(k1*(-c*t+x))/dx^2+2*d*a*k1*cos(k1*(-c*t+x))/dx)

How exactly do I do this best?
Thanks a lot!
Frank

Hi,

How to simulate 1000 times the Dice1 experiment and put the results in a list to search for the percentils of A=[A1,..,A1000]

( See attachment)

Thanks

QuestionSimulation.mw

how can solve ordinary differenatial equation in maple?

how can use laplce transformation for this equation in maple?

U0 := proc (x) options operator, arrow; cosh(sqrt(2)*x)-1 end proc;
sys_ode := diff(Uc(x), x, x)-(2*(1+U0(x)))*Uc(x) = 0;



Download a.mw

 

 

 

Hi,

Persay I have a sinusodal function or dampened sinusodial; it is understand that the domain is from negative infinity to infinity.  Say I wish to find the zeros or a certain y value of a sinusodial on a restricted domain - say from A to B. How would I tell maple -syntax wise- to solve on that restricted domain? Using the solve feature on maple, it only yields 1 value that satisfies the condition I give it .

 

Thank you all for the support; you al l are allowing to me develop a better understanding for maple.

say I have the functions:

y=e^x*sin(x)

y=e

i wish to find all the x values that satisfy that system on the x domain of 0 to 100

ode_problem.mw Can someone please look at this? I am having a problem with the ordinary differential equations. 

 

Hello there,

I'm pretty new to MAPLE so this may probably an "easy" mistake, but I don't know what's the problem anyway...

I'd like to find a solution to a system of four equations with four unknowns:

fsolve({(T[1]-T[0])/(10000-T[1]+T[0]) = -2.000000000, (T[2]-T[0])/(20000-T[2]+T[0]) = 0, (T[3]-T[0])/(50000-T[3]+T[0]) = 50, .1*T[0]+.3*T[1]+.55*T[2]+0.5e-1*T[3]-5000 = 0}, {T[0], T[1], T[2], T[3]})

Problem: Instead of providing the single solutions, MAPLE is simply just rewriting the fsolve-statement and does not solve. There is no error-message.

Does anybody know, what the problem is here? Is there no solution after all?

An n*n matrix A is called an MDS matrix over an arbitrary field if all determinant of square sub-matrices of A are non-zero over the field. It is not difficult to prove that the number of all square sub-matrices of A is binomial(2*n, n)-1. The code that I use to check whether A is an MDS matrix is in the following form 

 u := 1;
 for k to n do
 P := choose(n, k);
   for i to nops(P) do
    for j to nops(P) do
         F := A(P[i], P[j]);
         r := Determinant(F);
        if r = 0 then

           u := 0; k:=n+1;

            i := nops(P)+1; j := nops(P)+1;

        end if;

    end do;

      end do; 
   if u = 1 then

      print(A is an MDS Matrix) 

   end if; 
  end do:

When I run the mentioned code for n=16, it takes long time since we need to check binomial(32, 16)-1=601080389 cases to verify that A is an MDS matrix or not. 

My Question: Is there a modified procedure which can be used to check that an n*n matrix is  whether an MDS matrix for n>=16. 


 

i'm doing an optimaztion for my final project. when i execute the coding, it says: 

Warning, initial point [m1 = .900000000000000, m2 = .900000000000000, m3 = .900000000000000, sigma1 = .900000000000000, sigma2 = .900000000000000, sigma3 = .900000000000000] does not satisfy the inequality constraints; trying to find a feasible initial point
Error, (in DirectSearch:-Search) cannot find feasible initial point; last infeasible trial point is [m1 = HFloat(0.9), m2 = HFloat(1.9), m3 = HFloat(1.9), sigma1 = HFloat(1.9), sigma2 = HFloat(0.9), sigma3 = HFloat(0.9)].

here my full coding:


restart;
with(linalg);
with(Optimization);
with(DirectSearch);
[BoundedObjective, CompromiseProgramming, DataFit, 

  ExponentialWeightedSum, GlobalOptima, GlobalSearch, Minimax, 

  ModifiedTchebycheff, Search, SolveEquations, WeightedProduct, 

  WeightedSum]
q := Array(0 .. .111, [0.586e-2, 0.67475e-3, 0.52476e-3, 0.419785e-3, 0.354814e-3, 0.324859e-3, 0.319948e-3, 0.31e-3, 0.295013e-3, 0.28e-3, 0.259974e-3, 0.25496e-3, 0.26e-3, 0.270027e-3, 0.280026e-3, 0.284987e-3, 0.274934e-3, 0.279893e-3, 0.294824e-3, 0.324765e-3, 0.374672e-3, 0.439555e-3, 0.509439e-3, 0.56934e-3, 0.60923e-3, 0.634201e-3, 0.634233e-3, 0.624319e-3, 0.61442e-3, 0.624491e-3, 0.6495e-3, 0.684465e-3, 0.714452e-3, 0.729463e-3, 0.749451e-3, 0.789387e-3, 0.864347e-3, 0.964331e-3, 0.1064261e-2, 0.119413e-2, 0.1333876e-2, 0.150354e-2, 0.1683293e-2, 0.1883023e-2, 0.2102591e-2, 0.2356929e-2, 0.2656062e-2, 0.3004981e-2, 0.3403637e-2, 0.3841874e-2, 0.4349482e-2, 0.4931339e-2, 0.5587622e-2, 0.6293742e-2, 0.7044467e-2, 0.780967e-2, 0.8563865e-2, 0.9291539e-2, 0.9987678e-2, 0.10677379e-1, 0.1139506e-1, 0.12195833e-1, 0.13108819e-1, 0.14262384e-1, 0.15557439e-1, 0.17002799e-1, 0.18574592e-1, 0.20263971e-1, 0.22103523e-1, 0.24043337e-1, 0.26165465e-1, 0.28548531e-1, 0.31489568e-1, 0.3458584e-1, 0.37891201e-1, 0.41511365e-1, 0.45444649e-1, 0.49867283e-1, 0.54877269e-1, 0.60478547e-1, 0.66532745e-1, 0.7397857e-1, 0.81900977e-1, 0.90034141e-1, 0.98921462e-1, .108746024, .11839162, .130752255, .14368791, .157201822, .169770195, .177233464, .188823516, .204733363, .224639756, .249617627, .273409998, .298674064, .304378882, .319592743, .342821691, .367512872, .395257421, .426270115, .460795318, .498484563, .537417055, .577542345, .618093683, .660441764, .703856817, 1]);
variables = [m1, m2, m3, sigma1, sigma2, sigma3];
        variables = [m1, m2, m3, sigma1, sigma2, sigma3]
psi1 := 0.11480601e-1; psi2 := 0.8890123e-2; psi3 := .979629276;
                          0.011480601
                          0.008890123
                          0.979629276
s1(x):=exp(-(x/(m1))^((m1/(sigma1)))):  s1(x+1):=exp(-((x+1)/(m1))^((m1/(sigma1)))):  s2(x):=1-exp(-(x/(m2))^((-m2/(sigma2)))):  s2(x+1):=1-exp(-((x+1)/(m2))^((-m2/(sigma2)))):  s3(x):=exp(exp(-m3/(sigma3))-exp((x-m3)/(sigma3))): s3(x+1):=exp(exp(-m3/(sigma3))-exp((x+1-m3)/(sigma3)))  :  s(x):=(psi1*s1(x)+psi2*s2(x)+psi3*s3(x)): s(x+1):=(psi1*s1(x+1)+psi2*s2(x+1)+psi3*s3(x+1)):   qtopi(x):=1-((s(x+1))/(s(x))):
fungsikerugian := add((1-qtopi(x)/q[x])^2, x = 0 .. .110);
for x from 0 to 111 do c1[x] := 0 <= s1(x+1); c2[x] := 1 >= s1(x+1); c3[x] := 0 <= s2(x+1); c4[x] := 1 >= s2(x+1); c5[x] := 0 <= s3(x+1); c6[x] := 1 >= s3(x+1); c7[x] := 0 <= s1(x); c8[x] := 1 >= s1(x); c9[x] := 0 <= s2(x); c10[x] := 1 >= s2(x); c11[x] := 0 <= s3(x); c12[x] := 1 >= s3(x); c13[x] := 0 <= s(x); c14[x] := 1 >= s(x); c15[x] := 0 <= s(x+1); c16[x] := 1 >= s(x+1); c17[x] := 0 <= qtopi(x); c18[x] := 1 >= qtopi(x) end do;

constr := {m2 > sigma2, m3 > sigma3, seq(c1[x], x = 0 .. .110), seq(c10[x], x = 0 .. .111), seq(c11[x], x = 0 .. .111), seq(c12[x], x = 0 .. .111), seq(c13[x], x = 0 .. .111), seq(c14[x], x = 0 .. .111), seq(c15[x], x = 0 .. .110), seq(c16[x], x = 0 .. .110), seq(c17[x], x = 0 .. .110), seq(c18[x], x = 0 .. .110), seq(c2[x], x = 0 .. .110), seq(c3[x], x = 0 .. .110), seq(c4[x], x = 0 .. .110), seq(c5[x], x = 0 .. .110), seq(c6[x], x = 0 .. .110), seq(c7[x], x = 0 .. .111), seq(c8[x], x = 0 .. .111), seq(c9[x], x = 0 .. .111), m1 < sigma1, 0 <= m1 and m1 < 17, 17 <= m2 and m2 < 33, 33 <= m3 and m3 < 111};
solusi := DirectSearch:-Search(fungsikerugian, constr, assume = positive, evaluationlimit = 5555);
Warning, initial point [m1 = .900000000000000, m2 = .900000000000000, m3 = .900000000000000, sigma1 = .900000000000000, sigma2 = .900000000000000, sigma3 = .900000000000000] does not satisfy the inequality constraints; trying to find a feasible initial point
Error, (in DirectSearch:-Search) cannot find feasible initial point; last infeasible trial point is [m1 = HFloat(0.9), m2 = HFloat(1.9), m3 = HFloat(1.9), sigma1 = HFloat(1.9), sigma2 = HFloat(0.9), sigma3 = HFloat(0.9)]

thanks before

The command

taylor( (2 * pi * n) ^ (1/(2n), n = 2)

return   1+((1/2)*ln(2*Pi)+(1/2)*ln(n))/n+O(1/n^2)

I think, this is incorrect, in my oppinion must be:

1+((1/2)*ln(2*Pi)+(1/2)*ln(n))/n+O(ln(n)^2/n^2)

Is this error in maple?

 

Assume that a[1],a[2],..a[k] are positive integer numbers. Let n be a positive integer number. 

Suppose that igcd(a[1],a[2],..a[k])=1. 

My question: Is there a command in Maple such that the output of the this command be true provided that there are "non-negative integer numbers" x[1],x[2],..x[k] which satisfy the following condition:

a1*x1+a2*x2+...+ak*xk=n

Thanks in advance

How to let sqrt(5*x+5+y) become sqrt(5*(x+1)+y) automatically?

Dear all,

Following the comments I am editing this post:

I have a function F of variables (r1,r2,theta1,theta2,r,theta,a). r1, r2,theta1,theta2 are function of r,  theta and a. I want to take derivative of F with respect to a. r and theta are independent of a . I expressed everything in terms of 'a' as a function of 'a' at first. Then I use diff(F, a). I see there is an error in the final expression G .There is a restriction that theta1 should lie between -Pi to Pi and theta2 between 0 to 2*Pi. I speculate this is the source of error. Work sheet is attached. Reason: value of G: integration in 0 to pi/4 gives some  value but for 0 to pi it evaluates to zero and so is the case with 0 to 2*Pi. As "G "physically represents energy it must be a positive value.
 


restart;

theta1 := unapply(arctan(r*sin(theta)/(r*cos(theta)-a)), a);

proc (a) options operator, arrow; arctan(r*sin(theta)/(r*cos(theta)-a)) end proc

(1)

 

## theta1 -->[-Pi,Pi] and theta2-->[0,2*Pi]

NULL

theta2 := unapply(arctan(r*sin(theta)/(r*cos(theta)+a)), a);

proc (a) options operator, arrow; arctan(r*sin(theta)/(r*cos(theta)+a)) end proc

(2)

``

r1:=unapply(sqrt((r*cos(theta)-a)^2+r^2*(sin(theta))^2),a);r2:=unapply(sqrt((r*cos(theta)+a)^2+r^2*(sin(theta))^2),a);

proc (a) options operator, arrow; ((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2) end proc

 

proc (a) options operator, arrow; ((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2) end proc

(3)

sigma12:=0;sigma22:=sigma;

0

 

sigma

(4)

plot(arctan(tan(x)), x = (1/2)*Pi .. Pi)

 

## I have to use a constraint that

assume(theta1(a) < Pi, theta1(a) > -Pi, theta2(a) > 0, theta2(a) < 2*Pi, a>0,r>0)

u1:=(1+nu)*sigma22*sqrt(r1(a)*r2(a))*(4*(1-2*nu)*cos((theta1(a)+(theta2(a)))/2)-4*r*(1-nu)*cos(theta)/sqrt(r1(a)*r2(a))-2*r^2/(r1(a)*r2(a))*(cos((theta1(a)+(theta2(a)))/2)-cos(2*theta-theta1(a)/2-(theta2(a))/2)))/(4*E)+(1+nu)*sigma12*sqrt(r1(a)*r2(a))*(2*(1-2*nu)*sin((theta1(a)+(theta2(a)))/2)-2*r*(1-nu)*sin(theta)/sqrt(r1(a)*r2(a))+1*r^2/(r1(a)*r2(a))*sin(theta)*cos(theta-theta1(a)/2-(theta2(a))/2))/(E);

 

(1/4)*(1+nu)*sigma*(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)*(4*(1-2*nu)*cos((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-4*r*(1-nu)*cos(theta)/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)-2*r^2*(cos((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-cos(2*theta-(1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a))))/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2)))/E

(5)

NULL

u2:=(1+nu)*sigma*sqrt(r1(a)*r2(a))*(8*(1-nu)*sin((theta1(a)+(theta2(a)))/2)-4*r*(nu)*sin(theta)/sqrt(r1(a)*r2(a))-2*r^2/(r1(a)*r2(a))*(sin((theta1(a)+(theta2(a)))/2)+sin(2*theta-theta1(a)/2-(theta2(a))/2)))/(4*E)+(1+nu)*sigma12*sqrt(r1(a)*r2(a))*((1-2*nu)*cos((theta1(a)+theta2(a))/2)+2*r*(1-nu)*cos(theta)/sqrt(r1(a)*r2(a))-1*r^2/(r1(a)*r2(a))*sin(theta)*sin(theta-theta1(a)/2-theta2(a)/2))/(E);

 

(1/4)*(1+nu)*sigma*(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)*(8*(1-nu)*sin((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-4*r*nu*sin(theta)/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)-2*r^2*(sin((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))+sin(2*theta-(1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a))))/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2)))/E

(6)

 

## get u_r and u_theta as u[1] and u[2]

u[1] := u1*cos(theta)+u2*sin(theta);

(1/4)*(1+nu)*sigma*(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)*(4*(1-2*nu)*cos((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-4*r*(1-nu)*cos(theta)/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)-2*r^2*(cos((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-cos(2*theta-(1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a))))/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2)))*cos(theta)/E+(1/4)*(1+nu)*sigma*(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)*(8*(1-nu)*sin((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-4*r*nu*sin(theta)/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)-2*r^2*(sin((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))+sin(2*theta-(1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a))))/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2)))*sin(theta)/E

(7)

u[2] := -sin(theta)*u1+cos(theta)*u2;

-(1/4)*sin(theta)*(1+nu)*sigma*(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)*(4*(1-2*nu)*cos((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-4*r*(1-nu)*cos(theta)/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)-2*r^2*(cos((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-cos(2*theta-(1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a))))/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2)))/E+(1/4)*cos(theta)*(1+nu)*sigma*(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)*(8*(1-nu)*sin((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-4*r*nu*sin(theta)/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2))^(1/2)-2*r^2*(sin((1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))+(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))+sin(2*theta-(1/2)*arctan(r*sin(theta)/(r*cos(theta)-a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a))))/(((r*cos(theta)-a)^2+r^2*sin(theta)^2)^(1/2)*((r*cos(theta)+a)^2+r^2*sin(theta)^2)^(1/2)))/E

(8)

Diff_ur := simplify(diff(u[1], a));

(1/2)*sigma*(1+nu)*a*(-(-2*cos(theta)*a*r+a^2+r^2)^(1/2)*(2*cos(theta)*a*r+a^2+r^2)^(1/2)*r^2*cos(theta)*(a-r)*(a+r)*cos(2*theta+(1/2)*arctan(r*sin(theta)/(-r*cos(theta)+a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))+(-2*cos(theta)*a*r+a^2+r^2)^(1/2)*(2*cos(theta)*a*r+a^2+r^2)^(1/2)*r^2*sin(theta)*(a^2+r^2)*sin(2*theta+(1/2)*arctan(r*sin(theta)/(-r*cos(theta)+a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))+((a^2*r^2-r^4)*(2*cos(theta)*a*r+a^2+r^2)^(1/2)*(-2*cos(theta)*a*r+a^2+r^2)^(1/2)-4*(-2*cos(theta)*a*r+a^2+r^2)*(2*cos(theta)*a*r+a^2+r^2)*(-4*r^2*(nu-3/4)*cos(theta)^2+(3*nu-5/2)*r^2+a^2*(nu-1/2)))*cos(theta)*cos((1/2)*arctan(r*sin(theta)/(-r*cos(theta)+a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-sin(theta)*((2*cos(theta)*a*r+a^2+r^2)^(1/2)*r^2*(a^2+r^2)*(-2*cos(theta)*a*r+a^2+r^2)^(1/2)-4*(-2*cos(theta)*a*r+a^2+r^2)*(2*cos(theta)*a*r+a^2+r^2)*(-4*r^2*(nu-3/4)*cos(theta)^2+(a^2+r^2)*(nu-1)))*sin((1/2)*arctan(r*sin(theta)/(-r*cos(theta)+a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a))))/((-2*cos(theta)*a*r+a^2+r^2)^(3/2)*(2*cos(theta)*a*r+a^2+r^2)^(3/2)*((-2*cos(theta)*a*r+a^2+r^2)^(1/2)*(2*cos(theta)*a*r+a^2+r^2)^(1/2))^(1/2)*E)

(9)

``

 

Diff_ut := simplify(diff(u[2], a));

-(1/2)*sigma*(1+nu)*a*(-(-2*cos(theta)*a*r+a^2+r^2)^(1/2)*(2*cos(theta)*a*r+a^2+r^2)^(1/2)*r^2*sin(theta)*(a^2+r^2)*cos(2*theta+(1/2)*arctan(r*sin(theta)/(-r*cos(theta)+a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))-(-2*cos(theta)*a*r+a^2+r^2)^(1/2)*(2*cos(theta)*a*r+a^2+r^2)^(1/2)*r^2*cos(theta)*(a-r)*(a+r)*sin(2*theta+(1/2)*arctan(r*sin(theta)/(-r*cos(theta)+a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))+sin(theta)*((2*cos(theta)*a*r+a^2+r^2)^(1/2)*r^2*(a^2+r^2)*(-2*cos(theta)*a*r+a^2+r^2)^(1/2)-4*(-2*cos(theta)*a*r+a^2+r^2)*(-4*r^2*(nu-3/4)*cos(theta)^2+(a^2+r^2)*(nu-1/2))*(2*cos(theta)*a*r+a^2+r^2))*cos((1/2)*arctan(r*sin(theta)/(-r*cos(theta)+a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))+((a^2*r^2-r^4)*(2*cos(theta)*a*r+a^2+r^2)^(1/2)*(-2*cos(theta)*a*r+a^2+r^2)^(1/2)-4*(-2*cos(theta)*a*r+a^2+r^2)*(-4*r^2*(nu-3/4)*cos(theta)^2+(3*nu-2)*r^2+a^2*(nu-1))*(2*cos(theta)*a*r+a^2+r^2))*sin((1/2)*arctan(r*sin(theta)/(-r*cos(theta)+a))-(1/2)*arctan(r*sin(theta)/(r*cos(theta)+a)))*cos(theta))/((-2*cos(theta)*a*r+a^2+r^2)^(3/2)*(2*cos(theta)*a*r+a^2+r^2)^(3/2)*((-2*cos(theta)*a*r+a^2+r^2)^(1/2)*(2*cos(theta)*a*r+a^2+r^2)^(1/2))^(1/2)*E)

(10)

``

# find the limiting case

Att := limit(Diff_ut*r*sin(2*theta), r = infinity);

(2*a*sigma*cos(theta)^3*sin(theta)^2*nu+2*a*sigma*cos(theta)*sin(theta)^4*nu+2*a*sigma*cos(theta)^3*sin(theta)^2+2*a*sigma*cos(theta)*sin(theta)^4-8*a*sigma*cos(theta)*sin(theta)^2*nu^2-6*a*sigma*cos(theta)*sin(theta)^2*nu+2*a*sigma*cos(theta)*sin(theta)^2)/(((cos(theta)^2+sin(theta)^2)/cos(theta)^2)^(1/2)*E)

(11)

Arr := limit(Diff_ur*r*(1-cos(2*theta)), r = infinity);

(-16*a*sigma*cos(theta)^6*nu^2-16*a*sigma*cos(theta)^4*sin(theta)^2*nu^2-6*a*sigma*cos(theta)^6*nu-6*a*sigma*cos(theta)^4*nu*sin(theta)^2+10*a*sigma*cos(theta)^6+10*a*sigma*sin(theta)^2*cos(theta)^4+28*a*sigma*cos(theta)^4*nu^2+20*a*sigma*cos(theta)^2*sin(theta)^2*nu^2+10*a*sigma*cos(theta)^4*nu+4*a*sigma*cos(theta)^2*sin(theta)^2*nu-18*a*sigma*cos(theta)^4-16*a*sigma*sin(theta)^2*cos(theta)^2-12*a*sigma*cos(theta)^2*nu^2-4*a*sigma*sin(theta)^2*nu^2-4*a*sigma*cos(theta)^2*nu+2*a*sigma*sin(theta)^2*nu+8*a*sigma*cos(theta)^2+6*a*sigma*sin(theta)^2)/(cos(theta)*((cos(theta)^2+sin(theta)^2)/cos(theta)^2)^(1/2)*E)

(12)

G := (1/8)*(int(Arr+Att, theta = 0 .. Pi/2))*sigma*4;

-(1/8)*Pi*a*sigma^2*(4*nu^2-nu-5)/E

(13)

simplify(G)

-(1/8)*Pi*a*sigma^2*(4*nu^2-nu-5)/E

(14)

 


Download Derivative_implicit_maplePrime.mw

 

Thanks,

Hi,

 

Is there any way to add arrows to the parametrics plot to show the direction they are going? Thanks. 

First 739 740 741 742 743 744 745 Last Page 741 of 2434