MaplePrimes Questions

Hi,

I tried to find the set of real parameters a1, a2, a3, a4 and u1, u2, u3 which make a subalgebra L an ideal of a finite real Lie algebra LieAlg. Unfortunately, the "Query" command with the "Ideal" argument returns an error message that I can't get around. What should I change in this command?

restart: 
with(DifferentialGeometry):
with(LieAlgebras):
#
DGsetup([x1,x2,x3],R3):
#
Lie_Generators := [D_x1*x1+D_x2*x2+D_x3*x3, D_x3*k^2*x1+D_x1*x3, -D_x1*x2+D_x2*x1, D_x3*k^2*x2+D_x2*x3, D_x1, D_x2, D_x3]:
#
LieAlg:=LieAlgebraData(Lie_Generators):
#
DGsetup(LieAlg):
#
L:= evalDG([e3+u2*e5-u1*e6,e2-u3*e5-k^2*u1*e7,e4-u3*e6-k^2*u2*e7,e1-u1*e5-u2*e6-u3*e7]);
Sub_Alg_L:=LieAlgebraData(L);
#
TrueFalse,Equations,Solutions,IdealList:=Query(L,{u1,u2,u3},"Ideal");
#
TrueFalse,Equations,Solutions,IdealList:=Query([DGzip([a1,a2,a3,a4], L, "plus")],{a1,a2,a3,a4,u1,u2,u3},"Ideal");

Thanks for your help.

 

Jaqr

Dear all

I would like to solve a fourth order PDEs, using fourier transform. 

How can I apply fourier transform to get solution of my problem

Fourier_transform.mw

Thank you 

Hi, 

Let's suppose 

f := piecewise(x < 1, x, -x)

Using 

discont(f, x)

says me x=1 is a discontinuity point.
But can I obtain that f is continuous over  these two intervals?

(-infinity, 1)
[1, +infinity)


Thanks in advance

PS: I'm sure I've seen this type of question here before, but I couldn't find them.


lign1 := S*`union`(T intersect R);
                 lign1 := S (`intersect`(R, T))

lign2 := (S union T) intersect (S union R);
       lign2 := `intersect`(`union`(R, S), `union`(S, T))

verify({lign1}, {lign2});

 

My textbook says the expression lign1 and lign2 should be the same, but it outputs false. I suspect it's because Maple is ignoring the parenthesis in the first expression.

 


I m Stucked with this step

restart; with(plots)

eq1 := 2*n*4^n*eta^((n+1)*(1/2))*(diff(f(eta), `$`(eta, 2)))^(n-1)*(diff(f(eta), `$`(eta, 3)))+4^n*(n+1)*eta^((n-1)*(1/2))*(diff(f(eta), `$`(eta, 2)))^n+4*f(eta)*(diff(f(eta), `$`(eta, 2)))-4*m*(diff(f(eta), eta))^2+m-2*M*(diff(f(eta), eta)) = 0;

2*n*4^n*eta^((1/2)*n+1/2)*(diff(diff(f(eta), eta), eta))^(n-1)*(diff(diff(diff(f(eta), eta), eta), eta))+4^n*(n+1)*eta^((1/2)*n-1/2)*(diff(diff(f(eta), eta), eta))^n+4*f(eta)*(diff(diff(f(eta), eta), eta))-4*m*(diff(f(eta), eta))^2+m-2*M*(diff(f(eta), eta)) = 0

(1)

eq2 := 2*eta*(diff(theta(eta), `$`(eta, 2)))+2*(diff(theta(eta), eta))+Pr*(f(eta)*(diff(theta(eta), eta))-s*(diff(f(eta), eta))*theta(eta))+Nb*(diff(theta(eta), eta))*(diff(phi(eta), eta))+Nt*(diff(theta(eta), `$`(eta, 2)))^2 = 0;

2*eta*(diff(diff(theta(eta), eta), eta))+2*(diff(theta(eta), eta))+Pr*(f(eta)*(diff(theta(eta), eta))-s*(diff(f(eta), eta))*theta(eta))+Nb*(diff(theta(eta), eta))*(diff(phi(eta), eta))+Nt*(diff(diff(theta(eta), eta), eta))^2 = 0

(2)

eq3 := 2*eta*(diff(phi(eta), `$`(eta, 2)))+2*(diff(phi(eta), eta))+Sc*(f(eta)*(diff(phi(eta), eta))-s*(diff(f(eta), eta))*phi(eta))+Nb*(2*eta*(diff(theta(eta), `$`(eta, 2)))+2*(diff(theta(eta), eta)))/Nt = 0;
``

2*eta*(diff(diff(phi(eta), eta), eta))+2*(diff(phi(eta), eta))+Sc*(f(eta)*(diff(phi(eta), eta))-s*(diff(f(eta), eta))*phi(eta))+Nb*(2*eta*(diff(diff(theta(eta), eta), eta))+2*(diff(theta(eta), eta)))/Nt = 0

(3)

eq4 := 2*eta*(diff(chi(eta), `$`(eta, 2)))+2*(diff(chi(eta), eta))+Lb*(f(eta)*(diff(chi(eta), eta))-s*(diff(f(eta), eta))*chi(eta))-Pe*(2*eta*chi(eta)*(diff(phi(eta), `$`(eta, 2)))+2*chi(eta)*(diff(phi(eta), eta))+2*eta*(diff(chi(eta), `$`(eta, 2)))*(diff(phi(eta), `$`(eta, 2)))) = 0;

2*eta*(diff(diff(chi(eta), eta), eta))+2*(diff(chi(eta), eta))+Lb*(f(eta)*(diff(chi(eta), eta))-s*(diff(f(eta), eta))*chi(eta))-Pe*(2*eta*chi(eta)*(diff(diff(phi(eta), eta), eta))+2*chi(eta)*(diff(phi(eta), eta))+2*eta*(diff(diff(chi(eta), eta), eta))*(diff(diff(phi(eta), eta), eta))) = 0

(4)

bcs := (D(f))(a) = 0, f(a) = 2*s*a*(D(phi))(a)/Sc, theta(a) = 1, phi(a) = 1, chi(a) = 1, (D(f))(10) = 1/2, theta(10) = 0, phi(10) = 0, chi(10) = 0;

(D(f))(a) = 0, f(a) = 2*s*a*(D(phi))(a)/Sc, theta(a) = 1, phi(a) = 1, chi(a) = 1, (D(f))(10) = 1/2, theta(10) = 0, phi(10) = 0, chi(10) = 0

(5)

params := {Lb = .1, M = .1, Nb = .6, Nt = .2, Pe = 5, Pr = 6.2, Sc = .1, a = 0.1e-1, m = 1/3, n = 1, s = .1};

{Lb = .1, M = .1, Nb = .6, Nt = .2, Pe = 5, Pr = 6.2, Sc = .1, a = 0.1e-1, m = 1/3, n = 1, s = .1}

(6)

sol := dsolve(eval([eq1, eq2, eq3, eq4, bcs], params), numeric, output = listprocedure, maxmesh = 1024)

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

 

odeplot(sol, [[eta, f(eta)][eta, phi(eta)], [eta, theta(eta)], [eta, chi(eta)]], eta = eval(c, params) .. 10)

Error, invalid subscript selector

 

NULL


 

Download Pblm2.mw

Hello. I want to solve a 2X2 system using Maple. I have written this code but I do not get expected results.

restart;
with(DEtools);
with(plottools);
with(plots);
with(Algebraic);

F := -1 - y - exp(x);
G := x^2 + y*(exp(x) - 1);

sol1 := eliminate({F, G}, {x, y});

sol1 := [{x = RootOf(-exp(_Z)^2 + _Z^2 + 1), y = -exp(RootOf(-exp(_Z)^2 + _Z^2 + 1)) - 1}, {}]

But, the solutions are x=0 and y=-2 (I have solved the system by hand).

 

Any help?!

Hi,how to separate the letters with commas, to put them in a set like { a,b,c,d} instead of {abcd} ?

Thanks

 CAP13CombinatoireQuestion.mw?

When I try to solve this problem above error displays

Here is the file
 

Download Main.mw

Hi,

When I do large computations in a worksheet and that I manually save it, I get a message in a pop-up window which asks me if I want to save these calculations too:

  1. What is it that is really saved if I answer "YES" 
  2. As I always answer "NO" how can I force MAPLE to ApplyGlobally this answer (I wasn't capable to fin it out in the Preferences>Interface menu).
  3. is this preference accounted for during AutoSaving?

Always in the goal to save only the necessary informations (in a mw format, export to mpl format could of course be a solution), how can I remove all the outpouts (and more specifically all the plots) in the current worksheet?
Presently I'm doing this and, before my last  saving, I turn TF to false and rexecute all _display commands ... not very practical, I agree

restart

_display := proc(tf, graph)
if tf then print(graph) end if:
end proc;

TF := true: # or false if no plot is required

# for each plot:
p := display( something ):
_display(TF, p)



Thanks in advance

How to represent this function in maple?

h(x) is sin(x)/x

I use the product() but do not how to represent the step here like 1,3,5,7.... And also the integral term not working. Making Maple frozen

 

Thank you!

Dear all

I have two matrices represent ( f(x[i],y[j])  and  g(x[i],y[j]) of a  given two dimensional functions.

How can I use thoses values of matrices to compute the largest distance between the two curves.

Many thanks

 

 

 


When i try to solve the problem i got error like this 

Please help me get the solution

restart

with(plots):

eq1 := (2*(eta*(diff(f(eta), `$`(eta, 3)))+diff(f(eta), `$`(eta, 2))))/((1-phi[1])^2.5*(1-phi[2])^2.5)+((1-phi[2])*(1-phi[1]+phi[1]*rho[s1]/rho[f])+phi[2]*rho[s2]/rho[f])*f(eta)*(diff(f(eta), `$`(eta, 2)))-sigma[hnf]*M*(diff(f(eta), eta))/(sigma[f]*(m^2+1)) = 0;

2*(eta*(diff(diff(diff(f(eta), eta), eta), eta))+diff(diff(f(eta), eta), eta))/((1-phi[1])^2.5*(1-phi[2])^2.5)+((1-phi[2])*(1-phi[1]+phi[1]*rho[s1]/rho[f])+phi[2]*rho[s2]/rho[f])*f(eta)*(diff(diff(f(eta), eta), eta))-sigma[hnf]*M*(diff(f(eta), eta))/(sigma[f]*(m^2+1)) = 0

(1)

eq2 := k[hnf]*(eta*(diff(theta(eta), `$`(eta, 2)))+diff(theta(eta), eta))/k[f]+(1/2)*Pr*((1-phi[2])*(1-phi[1]+phi[1]*`&rho;C`[p][s1]/`&rho;C`[p][f])+phi[2]*`&rho;C`[p][s2]/`&rho;C`[p][f])*f(eta)*(diff(theta(eta), eta)) = 0;

k[hnf]*(eta*(diff(diff(theta(eta), eta), eta))+diff(theta(eta), eta))/k[f]+(1/2)*Pr*((1-phi[2])*(1-phi[1]+phi[1]*`&rho;C`[p][s1]/`&rho;C`[p][f])+phi[2]*`&rho;C`[p][s2]/`&rho;C`[p][f])*f(eta)*(diff(theta(eta), eta)) = 0

(2)

eq3 := 2*(1-phi[1])^2.5*(1-phi[2])^2.5*(eta*(diff(chi(eta), `$`(eta, 2)))+diff(chi(eta), eta))+Sc*f(eta)*(diff(chi(eta), eta))-beta*Sc*(1+delta*theta(eta))^n*exp^(-E/(1+delta*theta(eta)))*chi(eta) = 0;

2*(1-phi[1])^2.5*(1-phi[2])^2.5*(eta*(diff(diff(chi(eta), eta), eta))+diff(chi(eta), eta))+Sc*f(eta)*(diff(chi(eta), eta))-beta*Sc*(1+delta*theta(eta))^n*exp^(-E/(1+delta*theta(eta)))*chi(eta) = 0

(3)

bcs := f(c) = (1/2)*lambda*c, (D(f))(c) = (1/2)*lambda, theta(c) = 1, chi(c) = 1, (D(f))(10) = (1-lambda)*(1/2), theta(10) = 0, chi(10) = 0;

f(c) = (1/2)*lambda*c, (D(f))(c) = (1/2)*lambda, theta(c) = 1, chi(c) = 1, (D(f))(10) = 1/2-(1/2)*lambda, theta(10) = 0, chi(10) = 0

(4)

params := {E = .5, M = .1, Pr = 6.2, Sc = .5, beta = .5, c = .1, delta = .5, lambda = -1, m = .5, n = .1, k[f] = .6130, k[hnf] = 1.039626683, phi[1] = .1, phi[2] = .1, rho[f] = 997.1, rho[s1] = 5180, rho[s2] = 1800, sigma[f] = 0.5e-1, sigma[hnf] = 0.8888888337e-1, `&rho;C`[p][f] = 4.1668809*10^6, `&rho;C`[p][s1] = 3470600, `&rho;C`[p][s2] = 1290600};

{E = .5, M = .1, Pr = 6.2, Sc = .5, beta = .5, c = .1, delta = .5, lambda = -1, m = .5, n = .1, k[f] = .6130, k[hnf] = 1.039626683, phi[1] = .1, phi[2] = .1, rho[f] = 997.1, rho[s1] = 5180, rho[s2] = 1800, sigma[f] = 0.5e-1, sigma[hnf] = 0.8888888337e-1, `&rho;C`[p][f] = 4166880.900, `&rho;C`[p][s1] = 3470600, `&rho;C`[p][s2] = 1290600}

(5)

ODEs := [eq1, eq2, eq3]

[2*(eta*(diff(diff(diff(f(eta), eta), eta), eta))+diff(diff(f(eta), eta), eta))/((1-phi[1])^2.5*(1-phi[2])^2.5)+((1-phi[2])*(1-phi[1]+phi[1]*rho[s1]/rho[f])+phi[2]*rho[s2]/rho[f])*f(eta)*(diff(diff(f(eta), eta), eta))-sigma[hnf]*M*(diff(f(eta), eta))/(sigma[f]*(m^2+1)) = 0, k[hnf]*(eta*(diff(diff(theta(eta), eta), eta))+diff(theta(eta), eta))/k[f]+(1/2)*Pr*((1-phi[2])*(1-phi[1]+phi[1]*`&rho;C`[p][s1]/`&rho;C`[p][f])+phi[2]*`&rho;C`[p][s2]/`&rho;C`[p][f])*f(eta)*(diff(theta(eta), eta)) = 0, 2*(1-phi[1])^2.5*(1-phi[2])^2.5*(eta*(diff(diff(chi(eta), eta), eta))+diff(chi(eta), eta))+Sc*f(eta)*(diff(chi(eta), eta))-beta*Sc*(1+delta*theta(eta))^n*exp^(-E/(1+delta*theta(eta)))*chi(eta) = 0]

(6)

``

sol := dsolve(eval([ODES, bcs], params), numeric, output = listprocedure)

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

``


 

Download 1.mw
 

 

 

 

I am doing the first interactive plot in Tutorial 9:  Dynamic Applications.    The first part is Exploration Assistant.   This is mostly going OK but I don't want to have it rescale the y-axis to the data extents.   So I uncheck the box and type in my min & max values as shown below.    But when I drag the slider for coefficient a or b, the plot reverts back to using data extents.   How do I override this so that the axis range stays fixed when I drag the sliders?

I'd like to generate a string where the first part is changeable, and the second one needs to include apostrophs.

NODESteelProfiles_I:-Property("allmembers")

The section until til left bracket can be stored in one variable, but how can I add "allmembers") into the string?

Hi,

The evalDG command included in the LieAlgebras via the DifferentialGeometry package allows summations such as evalDG(e1+e2) where e1 and e2 are two generators of a given Lie algebra.

Now, let L be a list of such summations, e.g.,

L= [e1+a*e3,2*e2+b*e4,e1+3*e5]

where a and b are symbols for variable names in the real domain.
Then, while the code

evalDG(add(eval(cat(e,i)),i=1..n));

works fine (n be a given integer), the code

evalDG(add(eval(L[i]),i=1..n));

does not, and an error message results due to an "invalid subscript selector".

What is the right code to realize this summation?

Thanks.

Jaqr

First 478 479 480 481 482 483 484 Last Page 480 of 2433