Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Code was computed on two different PC:
1) Win 8.1, Maple 17.02 x64
2) Win 8.1, Maple 18.01 x64

In brief:

n:=3: 
Grid:-Seq('f(i)', i = 1 .. n):

works well in Maple 17.02 but gives an error in Maple 18.01. Why?

However,

(j -> Grid:-Seq('f(i)', i = 1 .. j))(n):

works well for both Maple versions.

according to examples from Maple help page
http://www.maplesoft.com/support/help/Maple/view.aspx?path=Grid%2fSeq
we have to pass exactly 'f(i)' (not just f(i)) into Grid:-Seq(...). Why?

Why doesn't Digits:=30: work properly for Grid:-Seq(...)?

For details see attached file. Output was produced in Maple 17.02. In Maple 18.01 the output will differ.


restart; n := 3; f1 := proc (i) options operator, arrow; evalf(sqrt(i)) end proc; f2 := proc (i) options operator, arrow; evalf(sqrt(i+1)) end proc; f3 := proc (i) options operator, arrow; evalf(i*Pi) end proc; g1 := proc (f, n) local za, zb, zc, str; str := sprintf("g1(%a,n)", f); za := seq(f(i), i = 1 .. n); zb := Grid:-Seq(f(i), i = 1 .. n); zc := (proc (j) options operator, arrow; Grid:-Seq(f(i), i = 1 .. j) end proc)(n); print("------------------------------"); print(cat("(a):   ", str), za); print(cat("(b):   ", str), zb); print(cat("(c):   ", str), zc); print("------------------------------") end proc; g2 := proc (f, n) local za, zb, zc, str; str := sprintf("g2(%a,n)", f); za := seq('f(i)', i = 1 .. n); zb := Grid:-Seq('f(i)', i = 1 .. n); zc := (proc (j) options operator, arrow; Grid:-Seq('f(i)', i = 1 .. j) end proc)(n); print("------------------------------"); print(cat("(a):   ", str), za); print(cat("(b):   ", str), zb); print(cat("(c):   ", str), zc); print("------------------------------") end proc

3

(1)

g1(f1, n);

"------------------------------"

 

"(a):   g1(f1,n)", 1., 1.414213562, 1.732050808

 

"(b):   g1(f1,n)", 1, 2^(1/2), 3^(1/2)

 

"(c):   g1(f1,n)", 1, 2^(1/2), 3^(1/2)

 

"------------------------------"

 

"------------------------------"

 

"(a):   g1(f2,n)", 1.414213562, 1.732050808, 2.

 

"(b):   g1(f2,n)", 1.414213562, 1.732050808, 2.000000000

 

"(c):   g1(f2,n)", 1.414213562, 1.732050808, 2.000000000

 

"------------------------------"

 

"------------------------------"

 

"(a):   g1(f3,n)", 3.141592654, 6.283185308, 9.424777962

 

"(b):   g1(f3,n)", 3.141592654, 6.283185308, 9.424777962

 

"(c):   g1(f3,n)", 3.141592654, 6.283185308, 9.424777962

 

"------------------------------"

 

"+++++++++++++++++++++++++++++++++++++++++++"

 

"------------------------------"

 

"(a):   g2(f1,n)", 1., 1.414213562, 1.732050808

 

"(b):   g2(f1,n)", 1., 1.414213562, 1.732050808

 

"(c):   g2(f1,n)", 1., 1.414213562, 1.732050808

 

"------------------------------"

 

"------------------------------"

 

"(a):   g2(f2,n)", 1.414213562, 1.732050808, 2.

 

"(b):   g2(f2,n)", 1.414213562, 1.732050808, 2.

 

"(c):   g2(f2,n)", 1.414213562, 1.732050808, 2.

 

"------------------------------"

 

"------------------------------"

 

"(a):   g2(f3,n)", 3.141592654, 6.283185308, 9.424777962

 

"(b):   g2(f3,n)", 3.141592654, 6.283185308, 9.424777962

 

"(c):   g2(f3,n)", 3.141592654, 6.283185308, 9.424777962

 

"------------------------------"

(2)

Digits := 30;

30

 

"------------------------------"

 

"(a):   g1(f1,n)", 1., 1.41421356237309504880168872421, 1.73205080756887729352744634151

 

"(b):   g1(f1,n)", 1, 2^(1/2), 3^(1/2)

 

"(c):   g1(f1,n)", 1, 2^(1/2), 3^(1/2)

 

"------------------------------"

 

"------------------------------"

 

"(a):   g1(f2,n)", 1.41421356237309504880168872421, 1.73205080756887729352744634151, 2.

 

"(b):   g1(f2,n)", 1.414213562, 1.732050808, 2.000000000

 

"(c):   g1(f2,n)", 1.414213562, 1.732050808, 2.000000000

 

"------------------------------"

 

"------------------------------"

 

"(a):   g1(f3,n)", 3.14159265358979323846264338328, 6.28318530717958647692528676656, 9.42477796076937971538793014984

 

"(b):   g1(f3,n)", 3.14159265358979323846264338328, 6.283185308, 9.424777962

 

"(c):   g1(f3,n)", 3.14159265358979323846264338328, 6.283185308, 9.424777962

 

"------------------------------"

 

"+++++++++++++++++++++++++++++++++++++++++++"

 

"------------------------------"

 

"(a):   g2(f1,n)", 1., 1.41421356237309504880168872421, 1.73205080756887729352744634151

 

"(b):   g2(f1,n)", 1., 1.414213562, 1.732050808

 

"(c):   g2(f1,n)", 1., 1.414213562, 1.732050808

 

"------------------------------"

 

"------------------------------"

 

"(a):   g2(f2,n)", 1.41421356237309504880168872421, 1.73205080756887729352744634151, 2.

 

"(b):   g2(f2,n)", 1.414213562, 1.732050808, 2.

 

"(c):   g2(f2,n)", 1.414213562, 1.732050808, 2.

 

"------------------------------"

 

"------------------------------"

 

"(a):   g2(f3,n)", 3.14159265358979323846264338328, 6.28318530717958647692528676656, 9.42477796076937971538793014984

 

"(b):   g2(f3,n)", 3.141592654, 6.283185308, 9.424777962

 

"(c):   g2(f3,n)", 3.141592654, 6.283185308, 9.424777962

 

"------------------------------"

(3)

``

NULL


Download Grid[Seq].mw

i am trying to export an animated gif file but the export windows freezes and exports an empty file with zero bytes

the animation was created by: display(map(p, convert(A(() .. (), 2), list)), insequence = true)

i have tried to give maple some time (2-3 hours) and i even tried to restart the computer and lauch maple and try to export it but it didnt worked

how can i export it or how can i plot the using commands

 

 

Greetings everyone. I tried to get the roots of this polynomial by using allvalues command. But I got the roots in indeces instead of the value of the roots.

what should i do?

matlab has break point in loops which in extremely useful tool for finding errors in long term loops,whay maple does not has sth similiar !?

How to identify whether biased game is changed based on the latest toss from a sequence

can HMM identify this?

for example

if

fair fair fair biased biased fair fair biased

Hi,

I have a system of diff equations (see below). I am trying to obtain analytical solution. when I assume that z=wN, I receive such solution. Do anybody have idea if I know that z>wN, does this system has an analytical solution?

diff(K(t), t) = -(1/2)*(Q(t)^2*alpha^2*eta*upsilon-2*eta*alpha*(N*upsilon*w*C[max]-z*alpha*K(t))*Q(t)+N*w*(-2*C[max]*z*eta*alpha*K(t)+upsilon*((-N*w+z)*alpha+N*C[max]^2*w*eta)))*K(t)/((C[max]*w*N-alpha*Q(t))*upsilon*N*w)

diff(Q(t), t) = (1/2)*(-z*(Q(t)^2*alpha^2*eta-2*N*Q(t)*alpha*eta*w*C[max]+w*(w*(eta*C[max]^2-alpha)*N+z*alpha)*N)*K(t)-2*N*upsilon*w*(N*w-z)*(C[max]*w*N-alpha*Q(t)))/((C[max]*w*N-alpha*Q(t))*upsilon*N*w)

K(0) = K0, Q(0) = Q0

Thanks,

Dmitry

http://www.math.uni-frankfurt.de/~numerik/maplestoch/

read "D:/diffalg03/stochastic9";
Sigma := `<,>`(`<|>`(1.0, .5), `<|>`(.5, 1.0));
V := WienerProcess(Sigma);
Z := t -> exp(a*t+b*V(t)[1]+c*V(t)[2]);
drift1 := simplify(Drift(Z(t))/Z(t));
diffusion1 := simplify(Diffusion(Z(t))/Z(t));
with(stochastic);
linearsde(drift1, diffusion1[1][1]);
Euler(x[1],drift1,diffusion1[1][1]);

1.what are a, b, and c?

2. how to convert SDE for monte carlo for this ito formula?

3. how to convert to euler scheme with this ito formula

 

When greek symbols are used in code edit region (by copying from worksheet 2d math mode), they used to get exported properly to PDF but the only issue was large code edit region used to get cut off. But now with this new 18.01 update, code edit region is not cut off but greek symbol inside code edit region are not appearing in PDF export instead just pink boxes. Has anyone else also encountered this issue and suggest a resolution.

I am trying to find out the stiffness matrix of composite by using iterative loop that sums over each laminate and adds the result to the previously calculated matrix 

D=null matrix

for i to 4 do Dply := evalf(evalm((1/3)*Q[i]*(z(i+1)^3-z(i)^3))); D := evalm(D+Dply) end do;
evalm(D);

although the values are coming out fine but in the diagonalm elements, it shows the true value + _rtable[4456495426] which I am not able to figure out why is it coming?

 

how i can trust in DirectSearch solution result.is there any creteria?

my variable is intensity.

this is my code:

ep0 := 1/(4*3.14); el := 8.54*10^(-2); hbar := 1; vf := 1/300; kb := 1; tem := 2.586*10^(-2); ci := 1; p := 1.458*10^16; beta := 2; ai := 7.1*10^(-4); bi := ai/sqrt(3); enph := .196; d := enph/(kb*tem); n0 := 1/(exp(enph/(kb*tem))-1); gama := hbar*vf; intensity := 10000001; w := 1.55; impurity := 7.2*10^3;

g := hbar*beta/(bi^2*sqrt(2*p*enph)); aa := g^2*(n0+1)/(2*Pi*hbar*gama^2); bb := g^2*n0/(2*Pi*hbar*gama^2); cc := 2/(Pi*gama^2); l := (1*hbar)*w/(2*kb*tem);u := el^2*intensity/(32*w*hbar^2);

 

DirectSearch:-SolveEquations([op([((enph*ln(1+exp(c+enph/(kb*tem)))/(kb*tem)-polylog(2, -exp(c))+polylog(2, -exp(c+enph/(kb*tem))))*enph*(kb*tem)^2-(enph^2*ln(1+exp(c+enph/(kb*tem)))/(kb^2*tem^2)+2*enph*polylog(2, -exp(c+enph/(kb*tem)))/(kb*tem)+2*polylog(3, -exp(c))-2*polylog(3, -exp(c+enph/(kb*tem))))*(kb*tem)^3+(-exp(b)*enph*ln(1+exp(c+enph/(kb*tem)))+exp(c+d)*enph*ln(1+exp(b-d+enph/(kb*tem)))+exp(b)*kb*tem*polylog(2, -exp(c))-exp(c+d)*kb*tem*polylog(2, -exp(b-d))-exp(b)*kb*tem*polylog(2, -exp(c+enph/(kb*tem)))+exp(c+d)*kb*tem*polylog(2, -exp(b-d+enph/(kb*tem))))*enph*(kb*tem)^2/((exp(b)-exp(c+d))*kb*tem)+(exp(b)*enph^2*ln(1+exp(c+enph/(kb*tem)))-exp(c+d)*enph^2*ln(1+exp(b-d+enph/(kb*tem)))+2*exp(b)*enph*kb*tem*polylog(2, -exp(c+enph/(kb*tem)))-2*exp(c+d)*enph*kb*tem*polylog(2, -exp(b-d+enph/(kb*tem)))+2*exp(b)*kb^2*tem^2*polylog(3, -exp(c))-2*exp(c+d)*kb^2*tem^2*polylog(3, -exp(b-d))-2*exp(b)*kb^2*tem^2*polylog(3, -exp(c+enph/(kb*tem)))+2*exp(c+d)*kb^2*tem^2*polylog(3, -exp(b-d+enph/(kb*tem))))*(kb*tem)^3/((exp(b)-exp(c+d))*kb^2*tem^2))*bb+u*(1/(1+exp(-l-c))-1/((1+exp(-l-c))*(1+exp(l-b))))-(((1*enph)*(enph-2*kb*tem*ln(1+exp(-b+enph/(kb*tem))))/(2*kb^2*tem^2)+2*kb^2*tem^2*(-polylog(2, -exp(-b+enph/(kb*tem)))+polylog(2, -cosh(b)+sinh(b))))*enph*(kb*tem)^2-(enph^2*(enph-3*kb*tem*ln(1+exp(-b+enph/(kb*tem))))-6*kb^2*tem^2*(enph*polylog(2, -exp(-b+enph/(kb*tem)))+kb*tem*(-polylog(3, -exp(-b+enph/(kb*tem)))+polylog(3, -cosh(b)+sinh(b)))))*(kb*tem)^3/(3*kb^3*tem^3)-(-exp(b)*enph^2+exp(c+d)*enph^2-2*exp(c+d)*enph*kb*tem*ln(1+exp(-b+enph/(kb*tem)))+2*exp(b)*enph*kb*tem*ln(1+exp(-c-d+enph/(kb*tem)))+2*exp(c+d)*kb^2*tem^2*polylog(2, -exp(-b))-2*exp(b)*kb^2*tem^2*polylog(2, -exp(-c-d))-2*exp(c+d)*kb^2*tem^2*polylog(2, -exp(-b+enph/(kb*tem)))+2*exp(b)*kb^2*tem^2*polylog(2, -exp(-c-d+enph/(kb*tem))))*enph*(kb*tem)^2/((2*(-exp(b)+exp(c+d)))*kb^2*tem^2)-(exp(b)*enph^3-exp(c+d)*enph^3+3*exp(c+d)*enph^2*kb*tem*ln(1+exp(-b+enph/(kb*tem)))-3*exp(b)*enph^2*kb*tem*ln(1+exp(-c-d+enph/(kb*tem)))+6*exp(c+d)*enph*kb^2*tem^2*polylog(2, -exp(-b+enph/(kb*tem)))-6*exp(b)*enph*kb^2*tem^2*polylog(2, -exp(-c-d+enph/(kb*tem)))+6*exp(c+d)*kb^3*tem^3*polylog(3, -exp(-b))-6*exp(b)*kb^3*tem^3*polylog(3, -exp(-c-d))-6*exp(c+d)*kb^3*tem^3*polylog(3, -exp(-b+enph/(kb*tem)))+6*exp(b)*kb^3*tem^3*polylog(3, -exp(-c-d+enph/(kb*tem))))*(kb*tem)^3/((3*(-exp(b)+exp(c+d)))*kb^3*tem^3))*aa-u*(1/(1+exp(l-b))-1/((1+exp(-l-c))*(1+exp(l-b)))) = 0, -cc*polylog(2, -exp(b))+cc*polylog(2, -exp(-c))-impurity = 0])], tolerances = 10^(-8), evaluationlimit = 20000)

 

Is it within the Physics environment possible to specify two sets, A and B, say, of quantities for which the following holds?

1.) any two elements of A anticommute,

2.) any two elements of B anticommute (as well), but

3.) any quantity from A commutes (not anticommutes) with any quantity from B.

Does there exist a Frobenius Group which is not  neither a Dihedralgroup nor  Symm(3) ?

 

Best regards

 

Kurt Ewald

Hello,
I have a system of first order diff. equations which I would like to solve symbolically. Unfortunately, Maple does not solve the system. Do anybody have suggestions how can I solve this system (please see below):

diff(S(t), t) = -eta*(C[max]*w*N-alpha*Q(t))*K(t)*S(t)/(w*N*(S(t)+K(t))),

diff(K(t), t) = S(t)*((z*eta*alpha*(C[max]*w*N-alpha*Q(t))*S(t)-upsilon*(eta*alpha^2*Q(t)^2-2*C[max]*w*N*eta*alpha*Q(t)+((-N*w+z)*alpha+N*C[max]^2*w*eta)*N*w))*K(t)^2+(2*((1/2)*z*eta*(C[max]*w*N-alpha*Q(t))*S(t)+N*w*upsilon*(N*w-z)))*S(t)*alpha*K(t)+N*S(t)^2*w*alpha*upsilon*(N*w-z))/((K(t)^2*alpha*z+3*S(t)*K(t)*alpha*z+S(t)*(2*S(t)*z*alpha+upsilon*(C[max]*w*N-alpha*Q(t))))*(S(t)+K(t))*N*w),

diff(Q(t), t) = (-alpha*z*(z*eta*(C[max]*w*N-alpha*Q(t))*K(t)+N*w*upsilon*(N*w-z))*S(t)^2+(-z^2*eta*alpha*(C[max]*w*N-alpha*Q(t))*K(t)^2-(eta*alpha^2*Q(t)^2-2*C[max]*w*N*eta*alpha*Q(t)+N*w*((2*N*w-2*z)*alpha+N*C[max]^2*w*eta))*z*upsilon*K(t)-N*w*upsilon^2*(N*w-z)*(C[max]*w*N-alpha*Q(t)))*S(t)-N*w*z*alpha*upsilon*K(t)^2*(N*w-z))/((2*S(t)^2*alpha*z+(3*z*alpha*K(t)+upsilon*(C[max]*w*N-alpha*Q(t)))*S(t)+K(t)^2*alpha*z)*N*w*upsilon)

where initials conditions are:

S(0) = S0, K(0) = K0, Q(0) = Q0

Thanks,

Dmitry

 

 

 

very slow cause my computer have sound and overheat, still can not 

calculated result

%c := Old_Asso_eigenvector1, a := Old_Asso_eigenvector3,

%b := Old_Asso_eigenvector2

% b <= c, a <= c,

% a ^ c = a, a V c = c

% b ^ c = b, b V c = c

restart;
with(ExcelTools):
with(ListTools):
with(DynamicSystems):
filename := "1207.HK";
open3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "B2:B100");
high3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "C2:C100");
low3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "D2:D100");
close3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "E2:E100");
with(CurveFitting):
n := 31;
f := Vector(n);
f2 := Vector(n);
open2 := Vector(n);high2 := Vector(n);gain2 := Vector(n);algebra2 := Vector(n);creative2 := Vector(n);creative3 := Vector(n);
upper2 := Vector(n);lower2 := Vector(n);upperloweratio := Vector(n);
deltaopen2 := Vector(n); deltahigh2 := Vector(n); deltalow2 := Vector(n); deltaclose2 := Vector(n);
logn := Vector(n);
for i from 0 to n-4 do
open2[i+1] := PolynomialInterpolation([[0,open3[n-i][1]],[1,open3[n-(i+1)][1]],[2,open3[n-(i+2)][1]],[4,open3[n-(i+3)][1]]],t):
high2[i+1] := PolynomialInterpolation([[0,high3[n-i][1]],[1,high3[n-(i+1)][1]],[2,high3[n-(i+2)][1]],[4,high3[n-(i+3)][1]]],t):
low2[i+1] := PolynomialInterpolation([[0,low3[n-i][1]],[1,low3[n-(i+1)][1]],[2,low3[n-(i+2)][1]],[4,low3[n-(i+3)][1]]],t):
if (close3[i+1][1]/close3[i+2][1]-1) < 0 then
gain2[i+1] := -1*round(100*abs(close3[i+1][1]/close3[i+2][1]-1)):
else
gain2[i+1] := round(abs(100*(close3[i+1][1]/close3[i+2][1]-1))):
end if;
deltaclose2[i+1] := close3[i+1][1] - close3[i+2][1];
deltahigh2[i+1] := high3[i+1][1] - high3[i+2][1];
deltaopen2[i+1] := open3[i+1][1] - open3[i+2][1];
logn[i+1] := ln(close3[i+1][1]/close3[i+2][1]);
f[i+1] := (high2[i+1] - open2[i+1])/4*1.8:
f2[i+1] := (open2[i+1] - low2[i+1])/4*1.8:
creative2[i+1] := simplify(((((close3[i+1][1]-close3[i+2][1]) + x)^2 -(close3[i+1][1]-close3[i+2][1])^2))/x)-x;
creative3[i+1] := simplify(((((close3[i+1][1]-close3[i+2][1]) + x)^3 -(close3[i+1][1]-close3[i+2][1])^3))/x);
upper2[i+1] := high3[i+1]-close3[i+1];
lower2[i+1] := close3[i+1]-low3[i+1];
upperloweratio[i+1] := round((lower2[i+1]/upper2[i+1])[1]);
od;
with(LinearAlgebra):
HilbertConj := proc(Px,Py)
return MatrixMatrixMultiply(Px,Py);
end proc:
HilbertDisj := proc(Px,Py)
return Px+Py- MatrixMatrixMultiply(Px,Py);
end proc:

t:=1;
i := 0;
InputMatrix3 := Matrix([[xxx, close3(t+1+i) , close3(t+2+i)],
[close3(t+1+i) , close3(t+2+i),0],
[close3(t+2+i),0 , 0]]):
InputMatrix3b := Matrix([[close3(t+1+i), close3(t+2+i) , close3(t+3+i)],
[close3(t+2+i) , close3(t+3+i),0],
[close3(t+3+i),0 , 0]]):
InputMatrix3c := Matrix([[close3(t+2+i), close3(t+3+i) , close3(t+4+i)],
[close3(t+3+i) , close3(t+4+i),0],
[close3(t+4+i),0 , 0]]):
m := MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3);
eigenvalues1 := Eigenvalues(m);
sys1 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[1],0,0],[0,eigenvalues1[1],0],[0,0,eigenvalues1[1]]]), Matrix([[x],[y],[z]]));
%solve([sys1[1][1],sys1[2][1],sys1[3][1]], [x,y,z]);
sol1 := solve([sys1[1][1],sys1[2][1]], [x,y,z]);

sys2 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[2],0,0],[0,eigenvalues1[2],0],[0,0,eigenvalues1[2]]]), Matrix([[x],[y],[z]]));
%solve([sys2[1][1],sys2[2][1],sys2[3][1]], [x,y,z]);
sol2 := solve([sys2[1][1],sys2[2][1]], [x,y,z]);

sys3 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[3],0,0],[0,eigenvalues1[3],0],[0,0,eigenvalues1[3]]]), Matrix([[x],[y],[z]]));
%solve([sys3[1][1],sys3[2][1],sys3[3][1]], [x,y,z]);
sol3 := solve([sys3[1][1],sys3[2][1]], [x,y,z]);

Old_Asso_eigenvector1 := Matrix([[rhs(sol1[1][1]),rhs(sol2[1][1]),rhs(sol3[1][1])],[rhs(sol1[1][2]),rhs(sol2[1][2]),rhs(sol3[1][2])],[rhs(sol1[1][3]),rhs(sol2[1][3]),rhs(sol3[1][3])]]);
Old_Asso_eigenvector2 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3b), InputMatrix3b)):
Old_Asso_eigenvector3 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3c), InputMatrix3c)):

% b <= c, a <= c, c := Old_Asso_eigenvector1, a := Old_Asso_eigenvector3, b := Old_Asso_eigenvector2
testa := HilbertConj(Old_Asso_eigenvector3[2], Old_Asso_eigenvector1);
testb := HilbertDisj(Old_Asso_eigenvector3[2], Old_Asso_eigenvector1);
testc := HilbertConj(Old_Asso_eigenvector2[2], Old_Asso_eigenvector1);
testd := HilbertDisj(Old_Asso_eigenvector2[2], Old_Asso_eigenvector1);

sysa := testa[1][1] = Old_Asso_eigenvector3[2][1][1];
sysb := testb[1][1] = Old_Asso_eigenvector1[2][1][1];
sysc := testc[1][1] = Old_Asso_eigenvector2[2][1][1];
sysd := testd[1][1] = Old_Asso_eigenvector1[2][1][1];

solve(sysa, xxx);

X belongto A, eigenvector(X) = 0

from this statement , 

using linearalgebra package eigenvectors function

the eigenvector matrix [3][1],[3][2],[3][3] are 1 , contradict 1=0

so, need to find another kind of eigenvector in terms of algebra 

using original basic calculation solve, however got error

 

m := Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]]);
eigenvector1 := Eigenvectors(m);
solve(
[eigenvector1[2][1][1]=0, eigenvector1[2][1][2]=0, eigenvector1[2][1][3]=0,
eigenvector1[2][2][1]=0, eigenvector1[2][2][2]=0, eigenvector1[2][2][3]=0,
eigenvector1[2][3][1]=0, eigenvector1[2][3][2]=0, eigenvector1[2][3][3]=0]
);

solve(
[eigenvector1[2][1][1]=0, eigenvector1[2][1][2]=0, eigenvector1[2][1][3]=0,
eigenvector1[2][2][1]=0, eigenvector1[2][2][2]=0, eigenvector1[2][2][3]=0]
);

 

eigenvalue1 :=
(1/6)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a5*a6

...

eigenvalue2 :=
-(1/12)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a5*a6

...

eigenvalue3 :=
-(1/12)*(36*a7*a1*a3+108*a7*a2*a6+

...

 

solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue1,0,0],[0,eigenvalue1,0],[0,0,eigenvalue1]]), Matrix([[x],[y],[z]])),[x,y,z]);
solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue2,0,0],[0,eigenvalue2,0],[0,0,eigenvalue2]]), Matrix([[x],[y],[z]])),[x,y,z]);
solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue3,0,0],[0,eigenvalue3,0],[0,0,eigenvalue3]]), Matrix([[x],[y],[z]])),[x,y,z]);

 

got error when using solve

> solve(MatrixMatrixMultiply(Matrix([[a1, a2, a3], [a4, a5, a6], [a7, a8, a9]])-Matrix([[eigenvalue1, 0, 0], [0, eigenvalue1, 0], [0, 0, eigenvalue1]]), Matrix([[x], [y], [z]])), [x, y, z]);
Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({set, list})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received Matrix(3, 1, {(1, 1) = ((2/3)*a1-(1/6)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a6*a5-72*a7*a3*a5-72*a8*a6*a1-72*a9*a4*a2+48*a9*a5*a1-12*a9*a1^2-12*a5*a1^2+8*a1^3-12*a9^2*a1-12*a5^2*a1-12*a9^2*a5-12*a9*a5^2+36*a8*a6*a9+36*a7*a3*a9+36*a4*a2*a1+36*a4*a2*a5+8*a9^3+8*a5^3+12*(54*a7*a2^2*a6*a4*a1+114*a8*a6*a9*a1*a4*a2+6*a8*a6*a9*a1*a7*a3+54*a8*a4*a3^2*a7*a9-60*a9*a1^2*a8*a6*a5-60*a8*a6*a7*a3*a5^2-60*a8*a6*a4*a2*a9^2-24*a9*a1*a4^2*a2^2+6*...

First 260 261 262 263 264 265 266 Last Page 262 of 363