666 jvbasha

javid basha jv

60 Reputation

8 Badges

3 years, 206 days

MaplePrimes Activity


These are questions asked by 666 jvbasha

Dear maple users,

In this code, how to find out the f'(x,t) and f''(x,t) values.
How to export the computed values in the excel file.JVB.mw

restart:

with(PDEtools):

with(plots):

fcns := {f(x,t)};

{f(x, t)}

(1)

ra:=2:b1:=1.41:na:=0.7:we:=0.5:eta[1]:=4*0.1:d:=0.5/1:xi:=0.1:m:=na:ea:=0.5:pr:=21: gr:=0.1:

R:=0.9323556933;

.9323556933

(2)

PDE1 :=ra*(diff(f(x,t),t))=+b1*(1+ea*cos(t))+(1/(R^2))*((diff(f(x,t),x,x))+(1/x)*diff(f(x,t),x));

2*(diff(f(x, t), t)) = 1.41+.705*cos(t)+1.150367877*(diff(diff(f(x, t), x), x))+1.150367877*(diff(f(x, t), x))/x

(3)

IBC := {D[1](f)(0,t)=0,f(1,t)=0,f(x,0)=0};

{f(1, t) = 0, f(x, 0) = 0, (D[1](f))(0, t) = 0}

(4)

sol :=  pdsolve({PDE1}, IBC, numeric,spacestep = 0.025, timestep=0.0001) ;

module () local INFO; export plot, plot3d, animate, value, settings; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; end module

(5)

sol:-plot[display](f(x, t), t = 1.2, linestyle = "solid", title = "Velocity Profile", labels = ["r", "f"]);

 

``


 

Download JVB.mw

 

Dear maple users,

Greetings.

In this code, the problem has executed. But I unable to get the graph.
Kindly do the needful to plot the figure at time t=0.45.
Also, please explain how to import the computed values into an excel file.

Waiting for your reply.JVB.mw
 

restart:

with(PDEtools):

with(plots):

ra:=1:b1:=4:na:=0.7:we:=0.5:eta[1]:=4*0.1:beta:=0.5/1:xi:=tan(0):m:=na:ea:=0.5:

R:=z->piecewise(beta<=z,(1+xi*z)*(1-(64/10)*eta[1]*((11/32)*(z-beta)-(47/48)*(z-beta)^2+(z-beta)^3-(1/3)*(z-beta)^4)),z<=beta+(3/2),(1+xi*z)*(1-(64/10)*eta[1]*((11/32)*(z-beta)-(47/48)*(z-beta)^2+(z-beta)^3-(1/3)*(z-beta)^4)),(1+xi*z));

proc (z) options operator, arrow; piecewise(beta <= z, (1+xi*z)*(1-(32/5)*eta[1]*((11/32)*z-(11/32)*beta-(47/48)*(z-beta)^2+(z-beta)^3-(1/3)*(z-beta)^4)), z <= beta+3/2, (1+xi*z)*(1-(32/5)*eta[1]*((11/32)*z-(11/32)*beta-(47/48)*(z-beta)^2+(z-beta)^3-(1/3)*(z-beta)^4)), 1+xi*z) end proc

(1)

``

PDE :=ra*(diff(f(x,t),t))=+b1*(1+ea*cos(t))+(1/(x*R(z)^2))*diff((x*(m+(1-m)*(1+(we*we*((diff(f(x,t),x)))^((na-1)/2)))^(-1))*(diff(f(x,t),x))),x);

PDE := diff(f(x, t), t) = 4+2.0*cos(t)+((.7+.3/(1+.25/(diff(f(x, t), x))^.1500000000))*(diff(f(x, t), x))+0.1125000000e-1*x*(diff(f(x, t), x, x))/((1+.25/(diff(f(x, t), x))^.1500000000)^2*(diff(f(x, t), x))^.150000000)+x*(.7+.3/(1+.25/(diff(f(x, t), x))^.1500000000))*(diff(f(x, t), x, x)))/(x*piecewise(.5 <= z, 1.440000000-.8800000000*z+2.506666667*(z-.5)^2-2.560000000*(z-.5)^3+.8533333331*(z-.5)^4, z <= 2.000000000, 1.440000000-.8800000000*z+2.506666667*(z-.5)^2-2.560000000*(z-.5)^3+.8533333331*(z-.5)^4, 1)^2)

(2)

IBC := {D[1](f)(0,t)=0,f(1,t)=0,f(x,0)=0};

{f(1, t) = 0, f(x, 0) = 0, (D[1](f))(0, t) = 0}

(3)

z:=0.77:

``

sol := pdsolve(PDE, IBC, numeric, spacestep = 0.1e-1);

module () local INFO; export plot, plot3d, animate, value, settings; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; end module

(4)

 

 

``


 

Download JVB.mw

 

 

Dear maple users 

Greetings.

I hope you are all fine.

In this code, I am solving the PDEs via pdsolve with numeric.

There is some mistake in the boundary condition and pdsolve.

Kindly help me that to get the solution for this PDE.

Waiting for your reply.

In this problem h(z) is piecewise 

 

Bc:   

code:JVB.mw

 

Note: z=0.5:

Dear maple users,

Greeting for the day.

I have some data in an excel file. How to plot the excel data in contours with labels.

Also, how to show the x-axis range =-1.5..1.5 and y-axis range = -0.5..1 with the contour sequence -2..2.

XLdat.xlsx

waiting for your reply.

Please see the figure for the model plot.

Dear maple users 

Greetings.

In this code, I am solving the PDEs via perturbation method.

There is some mistake in the boundary condition and pdsolve.

Kindly help me that to get the solution for this PDE via perturbation method.

Wating for your replay.

BC: 

Code: JVB.mw

1 2 3 4 5 6 7 Last Page 1 of 9