Ezzlebit

5 Reputation

2 Badges

11 years, 188 days

MaplePrimes Activity


These are replies submitted by Ezzlebit

Nevermind, I figured it out. Please disregard the previous question

@Carl Love Thanks for letting me know.

ass_1_9.pdf Here's a pdf which I hope will work better.

ass_1_8.pdf This is a similar question where the commands worked fine.

If those don't work, I hope this isn't too diffficult to read:

> with(DEtools);

> eq1 := diff(y(x), x) = -(2*x*cos(y(x))+3*x^2*y(x))/(x^3-x^2*sin(y(x))-y(x));
2
d 2 x cos(y(x)) + 3 x y(x)
--- y(x) = - -------------------------
dx 3 2
x - x sin(y(x)) - y(x)
> dsolve(eq1);
2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + _C1 = 0
2
> f := proc (x, C) options operator, arrow; -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+C = 0 end proc;
2 3 1 2
(x, C) -> -x cos(y(x)) - x y(x) + - y(x) + C = 0
2
> s := seq(f(x, i), i = -1 .. 8);
2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) - 1 = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + 1 = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + 2 = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + 3 = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + 4 = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + 5 = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + 6 = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + 7 = 0,
2

2 3 1 2
-x cos(y(x)) - x y(x) + - y(x) + 8 = 0
2
> plot({s}, x = -10 .. 10);
Error, (in plot) incorrect first argument [-x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2-1 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+1 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+2 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+3 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+4 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+5 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+6 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+7 = 0, -x^2*cos(y(x))-x^3*y(x)+(1/2)*y(x)^2+8 = 0]
>

Page 1 of 1