Giulianot

25 Reputation

2 Badges

4 years, 250 days

MaplePrimes Activity


These are replies submitted by Giulianot

@vv it's going to work for sure. but i was waiting for maple to do it directly without needing to list a sequence and stuff like that, you know...and it seems strange to me that it worked for single integrals, but not for double ones. also expression even return an answer to me when im asking for an specific time, but plotting doesn't work.

@vv isn't there a way to do it directly with the expressions? I have done this before using simple (single) integration....it worked perfectly. Now i'm trying with double ones, i get nothing. Maybe a maple's bug?

@Kitonum this is not an space curve...the three x's are three different displacements, the only variable for each one there is t2. I have manually set t2 for the first expression to 1/3 sec and it gave me a solution. However, if try to plot the same for t2 from 0 to 1/3, doesn't return nothing. So i think it should be a way to plot double or triple integrals...

@tomleslie i could solve the problem at the end. i found another mistake: it was -4<=(4000 `Q`)/(Pi `D`^(2))<=4, a conversion mistake. SolveEquation command is just amazing, i downloaded the Direct search package from somewhere, and just found how to work with it. it looks pretty superior to fsolve, i think maple should update the fsolve command using this method (i have no idea which, either how it works). at the end i just assumed each one of D's and solved a 10x10 system for the Q's. it worked perfectly well. i could bet taking -4<=(4000 `Q`)/(Pi `D`^(2))<=4 as restrictions on SolveEquation had solved the matter too.aceitoso.mw

@Carl Love sorry about that, im just a "noob" using maple. In fact, i have not coursed any class about it, and im not a programmer either. Just a guy who thinks maple is awesome and learning by myself... so that's why i did it. But im going to try to remove output next time before posting, thanks.

@tomleslie last equations are not equations itself, they are rather restrictions, so i need velocity to be between 0 and 4. im not sure if there is a way to solve the problem with ecuations and inequalities on it, working with -4<= 4 Qi/pi Di^2 <=4. i uploaded a new file and wrote the inequalities or restrictions in the fsolve command, 10 equations and 10 inequalities... i also modified the Re numbers with an absolute value, although all solutions got before were positive, maybe there is a solution with a negative Q and maple cant find it because of the Re numbers being negative... thanks for your help aceitoso.mw
 

nu := 6.1795*10^(-5)

0.6179500000e-4

(1)

varepsilon := 0.46e-1

0.46e-1

(2)

L__1 := 10.

10.

(3)

L__2 := 15.

15.

(4)

L__3 := 10.

10.

(5)

L__4 := 5*sqrt(2.)

7.071067810

(6)

L__5 := 6.

6.

(7)

L__6 := 6.

6.

(8)

L__7 := 20*sqrt(3.)*(1/3)

11.54700539

(9)

L__8 := 15.

15.

(10)

L__9 := 15.

15.

(11)

L__10 := 20.

20.

(12)

Re1 := 4*abs(Q__1)/(Pi*D__1*nu)

20604.24864*abs(Q__1)/D__1

(13)

Re2 := 4*abs(Q__2)/(Pi*D__2*nu)

20604.24864*abs(Q__2)/D__2

(14)

Re3 := 4*abs(Q__3)/(Pi*D__3*nu)

20604.24864*abs(Q__3)/D__3

(15)

Re4 := 4*abs(Q__4)/(Pi*D__4*nu)

20604.24864*abs(Q__4)/D__4

(16)

Re5 := 4*abs(Q__5)/(Pi*D__5*nu)

20604.24864*abs(Q__5)/D__5

(17)

Re6 := 4*abs(Q__6)/(Pi*D__6*nu)

20604.24864*abs(Q__6)/D__6

(18)

Re7 := 4*abs(Q__7)/(Pi*D__7*nu)

20604.24864*abs(Q__7)/D__7

(19)

Re8 := 4*abs(Q__8)/(Pi*D__8*nu)

20604.24864*abs(Q__8)/D__8

(20)

Re9 := 4*abs(Q__9)/(Pi*D__9*nu)

20604.24864*abs(Q__9)/D__9

(21)

Re10 := 4*abs(Q__10)/(Pi*D__10*nu)

20604.24864*abs(Q__10)/D__10

(22)

A__1 := (2.457*ln(1/((7/Re1)^.9+.27*varepsilon/D__1)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__1/abs(Q__1))^.9+0.1242e-1/D__1))^16

(23)

A__2 := (2.457*ln(1/((7/Re2)^.9+.27*varepsilon/D__2)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__2/abs(Q__2))^.9+0.1242e-1/D__2))^16

(24)

A__3 := (2.457*ln(1/((7/Re3)^.9+.27*varepsilon/D__3)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__3/abs(Q__3))^.9+0.1242e-1/D__3))^16

(25)

A__4 := (2.457*ln(1/((7/Re4)^.9+.27*varepsilon/D__4)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__4/abs(Q__4))^.9+0.1242e-1/D__4))^16

(26)

A__5 := (2.457*ln(1/((7/Re5)^.9+.27*varepsilon/D__5)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__5/abs(Q__5))^.9+0.1242e-1/D__5))^16

(27)

A__6 := (2.457*ln(1/((7/Re6)^.9+.27*varepsilon/D__6)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__6/abs(Q__6))^.9+0.1242e-1/D__6))^16

(28)

A__7 := (2.457*ln(1/((7/Re7)^.9+.27*varepsilon/D__7)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__7/abs(Q__7))^.9+0.1242e-1/D__7))^16

(29)

A__8 := (2.457*ln(1/((7/Re8)^.9+.27*varepsilon/D__8)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__8/abs(Q__8))^.9+0.1242e-1/D__8))^16

(30)

A__9 := (2.457*ln(1/((7/Re9)^.9+.27*varepsilon/D__9)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__9/abs(Q__9))^.9+0.1242e-1/D__9))^16

(31)

A__10 := (2.457*ln(1/((7/Re10)^.9+.27*varepsilon/D__10)))^16

1763934.700*ln(1/(0.7551394026e-3*(D__10/abs(Q__10))^.9+0.1242e-1/D__10))^16

(32)

B__1 := (37530/Re1)^16

14680.75929*D__1^16/abs(Q__1)^16

(33)

B__2 := (37530/Re2)^16

14680.75929*D__2^16/abs(Q__2)^16

(34)

B__3 := (37530/Re3)^16

14680.75929*D__3^16/abs(Q__3)^16

(35)

B__4 := (37530/Re4)^16

14680.75929*D__4^16/abs(Q__4)^16

(36)

B__5 := (37530/Re5)^16

14680.75929*D__5^16/abs(Q__5)^16

(37)

B__6 := (37530/Re6)^16

14680.75929*D__6^16/abs(Q__6)^16

(38)

B__7 := (37530/Re7)^16

14680.75929*D__7^16/abs(Q__7)^16

(39)

B__8 := (37530/Re8)^16

14680.75929*D__8^16/abs(Q__8)^16

(40)

B__9 := (37530/Re9)^16

14680.75929*D__9^16/abs(Q__9)^16

(41)

B__10 := (37530/Re10)^16

14680.75929*D__10^16/abs(Q__10)^16

(42)

f__1 := 8*((8/Re1)^12+1/(A__1+B__1)^1.5)^(1/12)

8*(0.1173811769e-40*D__1^12/abs(Q__1)^12+1/(1763934.700*ln(1/(0.7551394026e-3*(D__1/abs(Q__1))^.9+0.1242e-1/D__1))^16+14680.75929*D__1^16/abs(Q__1)^16)^1.5)^(1/12)

(43)

f__2 := 8*((8/Re2)^12+1/(A__2+B__2)^1.5)^(1/12)

8*(0.1173811769e-40*D__2^12/abs(Q__2)^12+1/(1763934.700*ln(1/(0.7551394026e-3*(D__2/abs(Q__2))^.9+0.1242e-1/D__2))^16+14680.75929*D__2^16/abs(Q__2)^16)^1.5)^(1/12)

(44)

f__3 := 8*((8/Re3)^12+1/(A__3+B__3)^1.5)^(1/12)

8*(0.1173811769e-40*D__3^12/abs(Q__3)^12+1/(1763934.700*ln(1/(0.7551394026e-3*(D__3/abs(Q__3))^.9+0.1242e-1/D__3))^16+14680.75929*D__3^16/abs(Q__3)^16)^1.5)^(1/12)

(45)

f__4 := 8*((8/Re4)^12+1/(A__4+B__4)^1.5)^(1/12)

8*(0.1173811769e-40*D__4^12/abs(Q__4)^12+1/(1763934.700*ln(1/(0.7551394026e-3*(D__4/abs(Q__4))^.9+0.1242e-1/D__4))^16+14680.75929*D__4^16/abs(Q__4)^16)^1.5)^(1/12)

(46)

f__5 := 8*((8/Re5)^12+1/(A__5+B__5)^1.5)^(1/12)

8*(0.1173811769e-40*D__5^12/abs(Q__5)^12+1/(1763934.700*ln(1/(0.7551394026e-3*(D__5/abs(Q__5))^.9+0.1242e-1/D__5))^16+14680.75929*D__5^16/abs(Q__5)^16)^1.5)^(1/12)

(47)

f__6 := 8*((8/Re6)^12+1/(A__6+B__6)^1.5)^(1/12)

8*(0.1173811769e-40*D__6^12/abs(Q__6)^12+1/(1763934.700*ln(1/(0.7551394026e-3*(D__6/abs(Q__6))^.9+0.1242e-1/D__6))^16+14680.75929*D__6^16/abs(Q__6)^16)^1.5)^(1/12)

(48)

f__7 := 8*((8/Re7)^12+1/(A__7+B__7)^1.5)^(1/12)

8*(0.1173811769e-40*D__7^12/abs(Q__7)^12+1/(1763934.700*ln(1/(0.7551394026e-3*(D__7/abs(Q__7))^.9+0.1242e-1/D__7))^16+14680.75929*D__7^16/abs(Q__7)^16)^1.5)^(1/12)

(49)

f__8 := 8*((8/Re8)^12+1/(A__8+B__8)^1.5)^(1/12)

8*(0.1173811769e-40*D__8^12/abs(Q__8)^12+1/(1763934.700*ln(1/(0.7551394026e-3*(D__8/abs(Q__8))^.9+0.1242e-1/D__8))^16+14680.75929*D__8^16/abs(Q__8)^16)^1.5)^(1/12)

(50)