I am aware of the robustness of the Maple in generating randoms for simulation study.
I really appreciate the example of the zero-inflated Poisson given; I think ours should follow the approach but, I don’t know I to do it especially when it is bivariate.
Please, I need help in generating discrete random numbers form my newly developed zero-inflated distribution defined in B:

#`### Generating Random Numbers from MBZIPR`
restart:
with(Statistics):
randomize():
N := 100;
x__0 := Vector[row](P, [1$N]);
x__1 := Sample(Binomial(N, 0.4), N);
x__2 := Sample(Normal(0, 1), N);
z__0 := Vector[row](P, [1$N]);
z__1 := Sample(Binomial(N, 0.4), N);
z__2 := Sample(Normal(0, 1), N) ;
t:= (1, 2);
phi__1:= (1)/((1+exp(-(gamma__01 *z__01 +gamma__11*z__11 + gamma__21*z__21)))):
phi__2:=(1)/((1+exp(-(gamma__02 *z__02 +gamma__12*z__12 + gamma__22*z__22)))):
lambda__1:=exp(beta__01 *x__01 +beta__11*x__11 + beta__21*x__21)*(1+exp(gamma__01 *z__01 + gamma__11*z__11 + gamma__21*z__21)):
lambda__2:=exp(beta__02 *x__02 +beta__12*x__12 + beta__22*x__22)*(1+exp(gamma__02 *z__02 + gamma__12*z__12 + gamma__22*z__22)):
B:= (y[1], y[2])->([[phi__t +(1-phi__t)*(exp(-lambda[1]- lambda[2])*(1+ alpha*(1-exp(-(1-(e)^()xp(-1))*lambda[1]))*(1-exp(-(1-exp(-1))*lambda[2])))),],[(1-phi__t)*(exp(-lambda[1]- lambda[2])*((lambda[1])^(y[1]) * (lambda[2])^(y[2]))/(y[1]!* y[2]!)*((1+ alpha)*(exp(-y[1])-exp(-(1-exp(-1))*lambda[1]))*(exp(-y[2])-exp(-(1-exp(-1))*lambda[2])))),]]):
B1:= Statistics:-Distribution( Type= discrete, ProbabilityFunction= B, Support= 0..infinity, DiscreteValueMap= (n-> n) ): (beta__01,beta__11,beta__21,beta__02,beta__12,beta__22,gamma__01,gamma__11,gamma__21,gamma__02,gamma__12,gamma__22,phi,alpha):= (0.2, -2, 0.25, 0.15, -2.5, 0.2, 0.1, 2, -2.5, 0.3, 1.3, 2.5, 0.5, -2) : M:= Matrix((100, 25), datatype= float[8]); S:=Statistics:-Sample(B1, M, method= [discrete, range= 0..100]);
Many thanks for the support.