Kitonum

21580 Reputation

26 Badges

17 years, 150 days

MaplePrimes Activity


These are answers submitted by Kitonum

At the points of local minimum and local maximum, the derivative of the function  f  is equal to zero:

restart;
f:=x->x^3+a*x^2+b*x;
Sys:={D(f)(-1)=0,D(f)(3)=0};
solve(Sys);
plot(eval(f(x),%), x=-3.5..5.5);  # A visual check

                                      

 

 

 

 

You can use the  Student:-NumericalAnalysis:-Secant  command if, from the first equation, simply express  in terms of  x  and substitute it into the second equation. From the plot, 3 roots are clearly visible (this is easy to justify strictly using the derivative). We find a sequence of successive approximations to the root on the segment  [2, 3]  with a given accuracy:

restart;
f1 := x^2 - x*y + 2:
  f2 := x^2*y^2 - y - 43:
f:=unapply(solve(f1, y), x);
Eq:=eval(f2, y=f(x));
plot(Eq, x=-3..3, -50..20, color=red, size=[700,300]);
L:=[Student:-NumericalAnalysis:-Secant(Eq, [2,3], tolerance = 10^(-2), output = sequence)];
f(L[-1]); # The value y for x=2.188564229
fsolve({f1,f2}, {x=2,y=3}); # Check

               

 

The  explicit  option allows you to get the values of all roots at once. A total of 5 roots were found. Explicit expressions for the roots from the second to the fifth are very cumbersome:

restart;

eq1 := alpha + beta*r[c] - d*n[c] - Upsilon*n[c]*(n[r] + r[c]) - n[r]*(alpha - d*n[c] - b*(n[r] + r[c]));
eq2 := `eϒ`*n[c]*(n[r] + r[c]) - mu*n[r] + d*n[c]*n[r] + b*n[c]*n[r] - alpha*n[r];
eq3 := b*n[c]*n[r] + d*n[c]*n[r] - alpha*n[r] - beta*r[c] + mu*n[r];

Sol:=[solve({eq1, eq2, eq3}, {n[c], n[r], r[c]}, explicit)];
m:=nops(Sol);
for k from 1 to m do
Sol||k:=Sol[k];
od;

 

See help  ?examples,Physics .

 

restart;
T[e]:=1.2: T[i]:=0.01: delta[p]:=0.2:
V:=n(x)^2*((T[e]+T[i])/T[e])*((((n(x)-1)*(1+1/(2*delta[p]))))-ln(n(x))-ln(n(x))+ln(2*delta[p]));
Eq:=diff(n(x),x)=sqrt(-2*V);
dsolve({Eq, n(0)=1}, n(x), numeric);
plots:-odeplot(%,[x,n(x)], x=0..1);

 

Example:

d:=gcdex(x^3-1, x^5-1, x, 's', 't');
s, t;
is(d=s*(x^3-1)+t*(x^5-1));

                           

 

restart;
`&I;` = (1/64)*(`&D;`^4-d^4)*Pi;

                                           

 

Example 1) :

geometry:-conic(c, x^2+x*y+y^2+2*x-2*y, [x, y]):
geometry:-detail(c);

Knowing the lengths of the major and minor semiaxes and the center, you can easily write down the standard equation of this ellipse.

restart;
ina := proc (n) false end :
a := proc (n) option remember; local k;
if n < 5 then k := 2*n-1
else for k from 2 while ina(k) or igcd(k, a(n-1)) <> 1 or igcd(k, a(n-2)) <> 1 or igcd(k, a(n-3)) <> 1
do  od; 
fi; ina(k) := true; k;
end proc:

m:=40:
L:=[seq([n,a(n)], n = 1 .. m)];
plot(L, view=[0..m,0..a(m)], size=[800,500]);

 

Use the  randpoly  command for this:

restart;
randomize():
for k from 1 to 54 do
pol[k]:=sort(x^4+randpoly(x, coeffs = rand(0. .. 2.), dense, degree = 3));
od;

 

NULL

restart; with(plots)

NULL

f := proc (x) options operator, arrow; (1/120)*x^3-(1/40)*x^2-(9/4)*x end proc

T := unapply(Student[Calculus1][Tangent](f(x), x = a), a); l := 10; d := unapply(l*abs(cos(arctan((D(f))(a)))), a)

G := plot(f(x), x = -20 .. 20, color = blue)

animate(plot, [[T(a), [[a, f(a)]]], x = a-d(a) .. a+d(a), style = [line, point], color = red, thickness = 3, symbolsize = 12], a = -16 .. 16, frames = 90, background = G, view = -20 .. 20)

 

``

Download QuestionAnim_new.mw

It works:

restart;
with(plots):
with(plottools):
Explore(plot([a*x^2, a*x^2+1], x=-1...1., -3..3), a=-1...1.);

restart

alias(phi = phi(x, t), chi = chi(x, t), psi = psi(x, t), rho = rho(x, t))

phi, chi, psi, rho

(1)

A := -phi*(2*epsilon1*conjugate(epsilon1)*psi*conjugate(epsilon2)*conjugate(phi)*epsilon2*conjugate(psi)+epsilon1^2*conjugate(epsilon1)^2*psi*conjugate(phi)*conjugate(psi)+chi*conjugate(epsilon2)*epsilon2*conjugate(psi)*conjugate(rho)+epsilon1*rho*conjugate(epsilon1)*conjugate(phi)*conjugate(rho)+epsilon2^2*psi*conjugate(epsilon2)^2*conjugate(phi)*conjugate(psi))*lambda1-conjugate(lambda1)*conjugate(chi)*(epsilon2*psi*rho*conjugate(epsilon2)*conjugate(phi)+chi*conjugate(epsilon1)*psi*epsilon1*conjugate(psi)+chi*rho*conjugate(rho));

-phi*(2*epsilon1*conjugate(epsilon1)*psi*conjugate(epsilon2)*conjugate(phi)*epsilon2*conjugate(psi)+epsilon1^2*conjugate(epsilon1)^2*psi*conjugate(phi)*conjugate(psi)+chi*conjugate(epsilon2)*epsilon2*conjugate(psi)*conjugate(rho)+epsilon1*rho*conjugate(epsilon1)*conjugate(phi)*conjugate(rho)+epsilon2^2*psi*conjugate(epsilon2)^2*conjugate(phi)*conjugate(psi))*lambda1-conjugate(lambda1)*conjugate(chi)*(epsilon2*psi*rho*conjugate(epsilon2)*conjugate(phi)+chi*conjugate(epsilon1)*psi*epsilon1*conjugate(psi)+chi*rho*conjugate(rho))

(2)

A1 := simplify(subs({chi = exp((I*lambda*(1/2))*x-I*t/lambda), phi = exp(-(I*lambda*(1/2))*x+I*t/lambda), psi = exp(-(I*lambda*(1/2))*x-I*t/lambda), rho = exp((I*lambda*(1/2))*x+I*t/lambda)}, A), trig)

(-exp(-((1/2)*I)*(lambda^2*x+2*t)/lambda)*exp(((1/2)*I)*(lambda^2*x+2*t)/lambda)*epsilon2*conjugate(lambda1)*conjugate(epsilon2)*exp(((1/2)*I)*conjugate((-lambda^2*x+2*t)/lambda))-(exp(-((1/2)*I)*(lambda^2*x+2*t)/lambda)*(epsilon1*conjugate(epsilon1)+epsilon2*conjugate(epsilon2))^2*exp(((1/2)*I)*conjugate((lambda^2*x+2*t)/lambda))+exp(((1/2)*I)*(lambda^2*x+2*t)/lambda)*exp(-((1/2)*I)*conjugate((lambda^2*x+2*t)/lambda))*epsilon1*conjugate(epsilon1))*lambda1*exp(((1/2)*I)*(-lambda^2*x+2*t)/lambda))*exp(-((1/2)*I)*conjugate((-lambda^2*x+2*t)/lambda))-exp(-((1/2)*I)*(-lambda^2*x+2*t)/lambda)*(conjugate(lambda1)*(exp(-((1/2)*I)*(lambda^2*x+2*t)/lambda)*exp(((1/2)*I)*conjugate((lambda^2*x+2*t)/lambda))*epsilon1*conjugate(epsilon1)+exp(((1/2)*I)*(lambda^2*x+2*t)/lambda)*exp(-((1/2)*I)*conjugate((lambda^2*x+2*t)/lambda)))*exp(((1/2)*I)*conjugate((-lambda^2*x+2*t)/lambda))+exp(((1/2)*I)*(-lambda^2*x+2*t)/lambda)*exp(((1/2)*I)*conjugate((lambda^2*x+2*t)/lambda))*exp(-((1/2)*I)*conjugate((lambda^2*x+2*t)/lambda))*lambda1*epsilon2*conjugate(epsilon2))

(3)

simplify(evalc(A1))

-lambda1*(epsilon1^2+epsilon2^2+1)^2

(4)

 

NULL

Download simplification_new.mw

If we plot the expression under the square root sign in the denominator, then we see that this expression, as a function of  t , takes on parts of the interval not only positive, but also negative values, and at some points it is equal to 0. Therefore, we are dealing with an improper integral from a complex-valued function. If this integral is calculated over the interval where this expression is positive, then the numeric result is obtained instantly:

restart;
Expr:=4*x*y*(y^4+2*x*y-2)/sqrt((1-(2*x*y)^2+(-3*y^2+1)^2)*(1+(y^2-1)^2));
plot(eval(op(1,denom(Expr)), [x,y]=~ [-(1+sqrt(2))*cos(t)-(sqrt(2)-1)*sin(t), cos(t)-sin(t)]), t=0..2*Pi);
evalf(Int(eval(Expr, [x, y] =~ [-(1+sqrt(2))*cos(t)-(sqrt(2)-1)*sin(t), cos(t)-sin(t)]),t=Pi/2 .. 3*Pi/4));

                

In the Real Domain for the cube root, use the  surd  command. Your equation can probably only be solved numerically:

restart;
plot([9*log10(x + 1), surd(x,3)], x=-1..1, -1.5..1.5);
Student:-Calculus1:-Roots(9*log10(x + 1)=surd(x,3), x=-1..1);

                                         
 

                                                 [ - 0.1179028301,  0.,  0.1432344750]

First 21 22 23 24 25 26 27 Last Page 23 of 290