Kitonum

21435 Reputation

26 Badges

17 years, 23 days

MaplePrimes Activity


These are answers submitted by Kitonum

Repetitive elements can easily remove from the list, making the set from the list.

L:=[0, 0, 1, 1, 2, 2]:

M:={op(L)}:

combinat[choose](M,2);

{{0,1},{0,2},{1,2}}

a:=Matrix([[4,3,4],[7,7,3],[7,3,1]]):

b:=Matrix([[6,3,5],[9,8,0],[8,8,1]]):

L:=[a,b,b,a]:

add(LinearAlgebra[DiagonalMatrix]([0$(2*i-2),L[i],0$(8-2*i)]),i=1..nops(L));

r:=25:

Sol:=dsolve({diff(x(t),t)=-10*x(t)+10*y(t), diff(y(t),t)=r*x(t)-y(t)-x(t)*z(t), diff(z(t),t)=(-8/3)*z(t)+x(t)*y(t), x(0)=-1, y(0)=-1, z(0)=1}, numeric):

plots[odeplot](Sol,[x(t), y(t), z(t)], 0..30, axes=normal, numpoints=10000);

 

It turns out a very interesting picture:

See  plots[matrixplot]  command.

f := (x, y) -> ((2*x^2+y^2*(x^2*(-2+sqrt(1/x^4+4/(x^2*y^2)+4/y^4+4))-1))/(4*x^2-2*y^2+4))^(1/2) ;

g := unapply(diff(f(x, y), x), x,y);

plot([g(.1, y), g(1, y), g(3, y)], y = 0 .. 10);

 

A:=Matrix([[2,2,8,5], [6,3,4,9], [5,5,7,4], [2,1,3,2]]);

interface(rtablesize=100):

B:=LinearAlgebra[DiagonalMatrix]([A, -A, A]);

Instead of L in fsolve command after comma write L=0..infinity

You have a rather complicated transcendental equation. Solve command does not solve such equations. Replace solve command by fsolve command.

A:=plot(x, x=0..1):

B:=plot(x^2, x=0..1):

C:=plot(x^5, x=0..1):

plots[display](array([A, B, C]), scaling=constrained, thickness=2);

The function

x->2*a/Pi*arcsin(sin(2*Pi*x/b))

gives a triangular signal between -a and a with the period b .

An example:

a:=1: b:=4:

plot(2*a/Pi*arcsin(sin(2*Pi*x/b)), x=0..8, thickness=2, scaling=constrained);

 

Dr:=[[1,5],[2,6],[3,4],[4,5],[5,7],[6,8],[7,4],[8,6],[9,5],[10,7]]:

Y:=proc(i) Dr[i,2] end; ty:=proc(i) Dr[i,1] end;

P[X](omega)=(1/2)*{(Sum('Y'(j)*cos(omega*('ty'(j)-1/(2*omega*tan((Sum(sin(2*omega*'ty'(j)),j=1..N[0]))/(Sum(cos(2*omega*'ty'(j)),j=1..N[0]))))))^2,j=1..N[0]))/(Sum(cos(omega*('ty'(j)-1/(2*omega*tan((Sum(sin(2*omega*'ty'(j)),j = 1..N[0]))/(Sum(cos(2*omega*'ty'(j)),j=1..N[0]))))))^2,j= 1..N[0]))+(Sum('Y'(j)*sin(omega*('ty'(j)-1/(2*omega*tan((Sum(sin(2*omega*'ty'(j)),j=1..N[0]))/(Sum(cos(2*omega*'ty'(j)),j=1..N[0]))))))^2,j=1..N[0]))/(Sum(sin(omega*('ty'(j)-1/(2*omega*tan((Sum(sin(2*omega*'ty'(j)),j=1..N[0]))/(Sum(cos(2*omega*'ty'(j)),j =1 .. N[0]))))))^2,j=1..N[0]))};

Walk1 := proc(n)

local pick, i,j,edge,step,L,a, A, B, C, E;   

pick := rand(0..1);    (i,j) := (0,0);  L:=[[0,0]];  edge := n/2;   

for step do a:=pick();       

if a=0 then i := i + 2*pick()-1; L:=[op(L), [i,j]]; fi;       

if a=1 then j := j + 2*pick()-1; L:=[op(L),[i,j]]; fi;       

if edge < abs(i) or edge < abs(j) then  print(step); break;       

end if; end do;

print(L);

A:=plot([seq([t, i, t=-n/2..n/2],i=-n/2..n/2), seq([i, t, t=-n/2..n/2],i=-n/2..n/2)], color=black);

B:=seq(plottools[disk](L[i],0.1, color=red), i=1..nops(L));

E:=seq(plottools[curve]([seq(L[k],k=1..i)], color=blue, thickness=5), i=1..nops(L));

C:=seq(plots[display](op([A, B[i], E[i]]))$10, i=1..nops(L));

print(plots[display](seq(C[i],i=1..10*nops(L)),insequence=true,scaling=constrained,view=[-n/2-1..n/2+1, -n/2-1..n/2+1]));

end proc:

 

The procedure returns the number of steps, a list of nodes traversed, and the animation of the random walk.

An example:

Walk1(4);

It is quite simply:

L1:=seq(2*Pi*i/20,i=0..20):

L:=op(evalf([L1]));

K:=op(evalf([seq(-5*sin(L1[i]),i=1..21)]));

For example as follows:

F:=Student[VectorCalculus][Tangent](t -> <t, t^2, t^3>, t = 2):

sort(Student[VectorCalculus][DotProduct]( <F(1)[1]-F(0)[1], F(1)[2]-F(0)[2], F(1)[3]-F(0)[3]>, <x-F(0)[1], y-F(0)[2], z-F(0)[3]> ))=0;

    x + 4y + 12z - 114 = 0

You have a complicated non-linear system of 4 equations with 4 unknowns and three parameters. Maple is usually not solve these systems symbolically. This system can be solved numerically, but it must be given the values ​​of all parameters, such as:

restart;

eq1:=A2*t2*exp(zt*t2*om)*sin(t2*wd)+A3*t3*sin(t3*wd)*exp(zt*t3*om) = 0;

eq2:=A2*t2*exp(zt*t2*om)*cos(t2*wd)+A3*t3*cos(t3*wd)*exp(zt*t3*om) = 0;

eq3:=              A2*exp(zt*t2*om)*sin(t2*wd)+A3*sin(t3*wd)*exp(zt*t3*om) = 0;

eq4:=1-A2-A3+A2*exp(zt*t2*om)*cos(t2*wd)+A3*cos(t3*wd)*exp(zt*t3*om) = 0;

zt:=1/2: wd:=2: om:=3:

s1:=fsolve({eq1,eq2,eq3,eq4},{t2=0..infinity, t3=0..infinity, A2=0..infinity,A3=0..infinity});

First 279 280 281 282 283 284 285 Last Page 281 of 289