Kitonum

20469 Reputation

26 Badges

16 years, 65 days

MaplePrimes Activity


These are Posts that have been published by Kitonum

I propose a different proof of this remarkable identity (see  http://www.mapleprimes.com/posts/144499-Stunningly-Beautiful-Identity-Proved ) in which  directly constructed a polynomial, whose root is the value of LHS, and this is expressed in radicals.

For the proof, we need three simple identities with cubic roots (a, b, c -any real numbers):

It is known that the trigonometric functions of an integer number of degrees may be expressed by radicals if the number of degrees is divisible by 3. Simple code finds all these values ​​in the range 0 to 90 degrees:

 [sin(`0`^`o`)=0,`   cos`(`0`^`o`)=1,`   tan`(`0`^`o`)=0,`   cot`(`0`^`o`)=infinity];

for n from 3 to 87 by 3 do

[sin(n^`o`)=convert(sin(n*Pi/180),radical...

Clock:=proc(H, M)  # H and M - time in hours (0 <= H <= 23) and minutes (0<=M<60)

local A1,A2, A, B, B1, C1, C, E, F,alpha,t, T, T1, T2, P, G;

uses plottools, plots; 

 

A1:=(irem(H,12)+M/60)*30;  A2:=M*6;

A:=circle([0,0], thickness=5);

P:=disk([0,0], 1, color=grey);

Here are two procedures associated with a clock with hands. I think they are interesting not only for fun, but will be useful for teachers in schools in the preparation of such tasks.

The first procedure called  ClockHandsAngle  finds the angle between the hands of the clock at any time.

The second procedure called  TimeFromAngle , for a given angle finds all times in a given time range. The first procedure  is...

Consider two sets in the Euclidean plane, each consisting of 4 points.

First set:  A(0, 0),  B(3, 4),  C(12, 4),  E(4, -1)

Second set:  F(0, -8),  G(12, -4),  H(9, -8),  K(4, -9)

It is easy to check that the set of all pairwise distances between the points of each of the given sets (6 numbers for each set ) are the same. At the same time it is obvious that there is no any...

First 8 9 10 11 Page 10 of 11