15 Reputation

One Badge

4 years, 36 days

MaplePrimes Activity

These are questions asked by Marcel123

I'm new at maple and have a problem/question with the rkf45 numerical ODE Solver.

At first, my computer need a lot of time to calculate an analytic solution.
Therefor, I use the numerical way.

I have the following second order ODE:
ODE:=m*((D@@2)(x))(t)+d*(D(x))(t)+k*x(t) = d*(eval(diff(y(x), x), x = t))+k*y(t)
where y(t) is a realy big piecewise function, defined by me.

My initial conditions are:
x(0) = 0, (D(x))(0) = 0

With dsolve, I get the solution x(t) and the first derivative x'(t). I'm able to plot them with odeplot.


Problem 1:
I need also the second derivative x''(t).
On this page: is an example (eq 13 and 14) where the second derivative is useable, but this doesn't work with my differential equation.
I have add 
(D(D(x)))(0) = 0
to my initial conditions but then, I got the error that only 2 initial conditions are required.
What could I do, so that rkf45 returns also the second derivative?

Problem 2:
And in addition to this, I want to calculate with x(t), x'(t), x''(t) but I found no way to use them.
Only plots are possible.
If I reduce y(t) to a minimum, I can do everything with the analytic solution: plot, d/dt, d2/dt2, +, -, ...
I tried also to convert the procedure to a function but in this case, there is no way to derivate it.

Many thanks...

Page 1 of 1