1072 Reputation

14 Badges

12 years, 76 days
East Grinstead, United Kingdom

MaplePrimes Activity

These are replies submitted by Ronan

@acer How do you change the prompt. I presume you mean the >. Could you give a short exampple of commenting out the code with this method? I have used the (*.........*) in the VS coce editor.

If you are asking about Maple's default help database it not allowed.

From System, Help, About Help Databases

It states.

Types of Help Databases in Maple
  Read-only Help Databases
The shipped Maple .help files, which are located in the \lib directory of your Maple installation, are read-only files. This means that you cannot add to, remove from, or edit this collection of help pages.

@acer I realised afterwards the output was not elidied. But by changing the the value of L to 1800 the last equation displayed nicely. The last entry in the table was irritatingly spacing out. Maple often does that. Here is another screen shot that shows that effect. I wish Maple would handle this.

@segfault The question was asked last year sometime and apparently the setting of 10 files is coded into Maple and users can't change that. Sorry the backup suggestion was of no use to you. The MAS.bak files open ok. I sometimes use is when I am searching for something I did a few week ago and have no idea which folder I put it in etc.

@acer Ok, I have it working inside my package. It really makes the information readable. A couple of screen shots.


@acer That is wonderful. Works much nicer than I had hoped for

@acer Well, I decided to opt for a simple sollution. If the length exceeds 1200 characters just print "Long output".

I changed "values" in the proc to.

values:=<`if`(length(qqf)<=1200,qqf,cat("Long Output ",length(qqf)," characters")),`if`(length(q13)<=1200,q13,cat("Long Output ",length(q13)," characters")),`if`(length(q24)<=1200,q24,cat("Long Output ",length(q24)," characters"))>;

which displays as

Was there a windows update and could you restore to prior to that.

Have you installed any new software?

Can wipe and reinstall Maple?

Any other programs acting up?

Try running sfc /scannow   now in the command prompt as an administrator

Some procress on my problem. I found a proc somebody here wrote for me.  I searched but can't find the question now to credit the author. 
I have manually applied the concept to pairs of elements list wise as a test I haven't figured out how to get frontend working with multiple gcd's.

This could be applied to longer lists/vectors or even matrices.
I have just tested on one vector and it produced about a 30% reduction. I  would like to get this into an efficient procedure.



#Fact written be a MaplePrimes member around 2017/18

fact := (expr::equation) -> frontend(gcd, [numer(lhs(expr)), numer(rhs(expr))])/frontend(gcd, [denom(lhs(expr)), denom(rhs(expr))])

proc (expr::equation) options operator, arrow; frontend(gcd, [numer(lhs(expr)), numer(rhs(expr))])/frontend(gcd, [denom(lhs(expr)), denom(rhs(expr))]) end proc


eq := (F + G)*R*sinh(x)/sqrt(W - 1) = 1/2*M*R^2*tan(x)*a/(R*sqrt(W - 1))

(F+G)*R*sinh(x)/(W-1)^(1/2) = (1/2)*M*R*tan(x)*a/(W-1)^(1/2)






(F+G)*sinh(x) = (1/2)*M*tan(x)*a


#Concept applied to a list of 2 elements

fact1 := (expr::list) -> frontend(gcd, [numer((expr[1])), numer((expr[2]))])/frontend(gcd, [denom((expr[1])), denom((expr[2]))])

proc (expr::list) options operator, arrow; frontend(gcd, [numer(expr[1]), numer(expr[2])])/frontend(gcd, [denom(expr[1]), denom(expr[2])]) end proc





l3:=Vector[column](3, [2*(((a^3 + a*b^2)*sqrt(b^2 + c^2) + 1/2*b^4 + 1/2*b^2*c^2 + 1/2*c^2*f^2 + 1/2*f^4)*sqrt(a^2 + b^2) + (-1/2*a^2*b^2 - 1/2*a^2*f^2 - 1/2*b^4 - 1/2*f^4)*sqrt(b^2 + c^2) - c*(b^2 + c^2)*(a^2 + b^2))/(sqrt(b^2 + c^2)*((-b^2 + f^2)*sqrt(a^2 + b^2) + (b^2 - f^2)*sqrt(b^2 + c^2) + (2*a^2 + 2*b^2)*(a - c))) - (-sqrt(a^2 + b^2)*sqrt(b^2 + c^2) + f^2)/sqrt(b^2 + c^2), -(2*sqrt(b^2 + c^2)*(-1/2*b^2*c + f^2*(a - 1/2*c))*sqrt(a^2 + b^2) + (b - f)*(b + f)*(a*f^2 + b^2*c + c^3 - c*f^2))/(sqrt(b^2 + c^2)*((-b^2 + f^2)*sqrt(a^2 + b^2) + (b^2 - f^2)*sqrt(b^2 + c^2) + (2*a^2 + 2*b^2)*(a - c))) + b^2/sqrt(a^2 + b^2), (2*sqrt(b^2 + c^2)*(-1/2*b^2*c + f^2*(a - 1/2*c))*sqrt(a^2 + b^2) + (b - f)*(b + f)*(a*f^2 + b^2*c + c^3 - c*f^2))*(-sqrt(a^2 + b^2)*sqrt(b^2 + c^2) + f^2)/((b^2 + c^2)*((-b^2 + f^2)*sqrt(a^2 + b^2) + (b^2 - f^2)*sqrt(b^2 + c^2) + (2*a^2 + 2*b^2)*(a - c))) - (2*((a^3 + a*b^2)*sqrt(b^2 + c^2) + 1/2*b^4 + 1/2*b^2*c^2 + 1/2*c^2*f^2 + 1/2*f^4)*sqrt(a^2 + b^2) + 2*(-1/2*a^2*b^2 - 1/2*a^2*f^2 - 1/2*b^4 - 1/2*f^4)*sqrt(b^2 + c^2) - 2*c*(b^2 + c^2)*(a^2 + b^2))*b^2/(sqrt(b^2 + c^2)*((-b^2 + f^2)*sqrt(a^2 + b^2) + (b^2 - f^2)*sqrt(b^2 + c^2) + (2*a^2 + 2*b^2)*(a - c))*sqrt(a^2 + b^2))])

Vector(3, {(1) = (2*((a^3+a*b^2)*sqrt(b^2+c^2)+(1/2)*b^4+(1/2)*b^2*c^2+(1/2)*c^2*f^2+(1/2)*f^4)*sqrt(a^2+b^2)+2*(-(1/2)*a^2*b^2-(1/2)*a^2*f^2-(1/2)*b^4-(1/2)*f^4)*sqrt(b^2+c^2)-2*c*(b^2+c^2)*(a^2+b^2))/(sqrt(b^2+c^2)*((-b^2+f^2)*sqrt(a^2+b^2)+(b^2-f^2)*sqrt(b^2+c^2)+(2*a^2+2*b^2)*(a-c)))-(-sqrt(a^2+b^2)*sqrt(b^2+c^2)+f^2)/sqrt(b^2+c^2), (2) = -(2*sqrt(b^2+c^2)*(-(1/2)*b^2*c+f^2*(a-(1/2)*c))*sqrt(a^2+b^2)+(b-f)*(b+f)*(a*f^2+b^2*c+c^3-c*f^2))/(sqrt(b^2+c^2)*((-b^2+f^2)*sqrt(a^2+b^2)+(b^2-f^2)*sqrt(b^2+c^2)+(2*a^2+2*b^2)*(a-c)))+b^2/sqrt(a^2+b^2), (3) = (2*sqrt(b^2+c^2)*(-(1/2)*b^2*c+f^2*(a-(1/2)*c))*sqrt(a^2+b^2)+(b-f)*(b+f)*(a*f^2+b^2*c+c^3-c*f^2))*(-sqrt(a^2+b^2)*sqrt(b^2+c^2)+f^2)/((b^2+c^2)*((-b^2+f^2)*sqrt(a^2+b^2)+(b^2-f^2)*sqrt(b^2+c^2)+(2*a^2+2*b^2)*(a-c)))-((2*(a^3+a*b^2)*sqrt(b^2+c^2)+b^4+b^2*c^2+c^2*f^2+f^4)*sqrt(a^2+b^2)+(-a^2*b^2-a^2*f^2-b^4-f^4)*sqrt(b^2+c^2)-2*c*(b^2+c^2)*(a^2+b^2))*b^2/(sqrt(b^2+c^2)*((-b^2+f^2)*sqrt(a^2+b^2)+(b^2-f^2)*sqrt(b^2+c^2)+(2*a^2+2*b^2)*(a-c))*sqrt(a^2+b^2))})










Vector(3, {(1) = ((4*a-2*c)*(a^2+b^2)*sqrt(b^2+c^2)+2*b^4+2*b^2*c^2)*sqrt(a^2+b^2)-(2*a^2+2*b^2)*(a*f^2+b^2*c+b^2*sqrt(b^2+c^2)+c^3-c*f^2), (2) = (2*b-2*f)*(b+f)*((-(1/2)*sqrt(a^2+b^2)*b^2+(a-(1/2)*c)*(a^2+b^2))*sqrt(b^2+c^2)+(-(1/2)*b^2*c+(1/2)*(-a+c)*f^2-(1/2)*c^3)*sqrt(a^2+b^2)+(1/2)*b^4+(1/2)*b^2*c^2)/sqrt(a^2+b^2), (3) = -((((2*a-c)*b^6+(2*a*c^2-c^3+(-a^2-2*f^2)*c+2*a^3+2*a*f^2)*b^4+((-a^2-2*f^2)*c^3+(2*a^3+2*a*f^2)*c^2+(-a^2*f^2+2*f^4)*c+2*a^3*f^2-a*f^4)*b^2+(-a^2*f^2+f^4)*c^3+2*a^3*c^2*f^2-c*f^6+a*f^6)*sqrt(a^2+b^2)-b^2*(b^2+c^2)*(a^2*b^2+a^2*f^2+b^4+f^4))*sqrt(b^2+c^2)+(b^2+c^2)*(b^2*(b^4+b^2*c^2+c^2*f^2+f^4)*sqrt(a^2+b^2)+(-b^4*c+(a*f^2-c^3-c*f^2)*b^2-3*a*f^4-c^3*f^2+2*c*f^4)*(a^2+b^2)))/(sqrt(a^2+b^2)*(b^2+c^2))})














@acer Yes. I shali experiment more on this

@Carl Love I never knew that the ab=ba could be done 

(ab, bc, cd, da):= ((ba, cb, dc, ad):= (17, 17, 29, 18))

also `&D;` I guess because D is the derivative operator.

@acer Thank you. I will test that tonight.