adel-00

135 Reputation

9 Badges

14 years, 16 days

MaplePrimes Activity


These are questions asked by adel-00

Hi every one, I'm trying to plot the function f which is functions in terms of Bessel functions:Here is the code plz any advise i'll be grateful.

restart:
assume(d,real):assume(t,real):omega:=10^6:Digits:=15:assume(n,real):Delta:=0:
N:=1:N1:=1+2*N;M:=sqrt(N*(N+1));alpha:=M/(2*omega):z(0):=-1:
3
(1/2)
2
I1:=simplify(Sum(BesselJ(n,-I*alpha)*(1/(N1+I*2*omega*n))*(exp((N1+I*2*omega*n)*t)-1),n=-10..10)):

 

sz:=z(0)*exp(-N1*t)*exp(-alpha*sin(2*omega*t))-exp(-N1*t)*exp(-alpha*sin(2*omega*t))*I1:
I3:=Sum((BesselJ(n,-2*alpha)*(-1)^n+BesselJ(n,-2*I*alpha))*exp(-(N1-I*Delta+2*n*omega)*t),n=-infinity..infinity):
w:=laplace(I3,t,s): w1:=subs(s=I*d,w):
w2:=limit(sz,t=infinity):
Need to plot f
f:=w1*w2:
with(plots):plot(Re(f),d=0..5,tickmarks=[2, 2],thickness=2,linestyle=1,color=black,axes=boxed,titlefont=[SYMBOL,14],font=[1,1,18],tickmarks=[2,3],thickness=2);
Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

 

I seperate the variables in Real and Imigneray parts,  as follows:

restart:
Dijits:=20:
------------------------- Defining the nature of the variables used ----------------------
assume(t,real):

x(0):=-1:y(0):=1:z(0):=conjugate(y(0)):N:=10:Delta:=5:omega:=10^(6):N1:=1+2*N:M:=sqrt(N*(N+1)):
t0:=0.0:tN:=30.0: M1:=5000;:th:=evalf((tN-t0)/M1):
5000
ini1:=u(0)=Re(y(0)), v(0)=Im(z(0)),w(0)=x(0);
u(0) = 1, v(0) = 0, w(0) = -1
var:={u(t),v(t),w(t)}: 
dsys1 :=diff(w(t),t)=-(N1+M*cos(2*omega*t))*w(t)-1+2*u(t)*cos(2*omega*t)+2*v(t)*sin(2*omega*t), diff(u(t),t)=-N1*u(t)+Delta*v(t)-2*M+(2*M*u(t)-N1-w(t))*cos(2*omega*t)-2*M*v(t)*sin(2*omega*t), diff(v(t),t)=-N1*v(t)-Delta*u(t)-2*M+(2*M*u(t)-N1-w(t))*sin(2*omega*t)+2*M*v(t)*cos(2*omega*t):
dsol1 :=dsolve({dsys1,ini1},var,numeric, output=listprocedure, abserr=1e-9, relerr=1e-8,range=0..1,maxfun=5000):
Warning, cannot evaluate the solution further right of .46544244e-3, maxfun limit exceeded (see ?dsolve,maxfun for details)
dsolu:=subs(dsol1,u(t)):dsolv:=subs(dsol1,v(t)):dsolw:=subs(dsol1,w(t)):
t1:=array(0..M1,[]): u1:=array(0..M1,[]): v1:=array(0..M1,[]): w1:=array(0..M1,[]): pt1:=array(0..M1,[]):pt2:=array(0..M1,[]):pt3:=array(0..M1,[]): 
for i from 0 to M1 do t1[i]:=evalf(th*i):u1[i]:=evalf(dsolu(t1[i]));v1[i]:=evalf(dsolv(t1[i])):w1[i]:=evalf(dsolw(t1[i])):pt1[i]:=[t1[i],u1[i]]:pt2[i]:=[t1[i],v1[i]]:pt3[i]:=[t1[i],w1[i]]:od:
Error, (in dsolu) cannot evaluate the solution further right of 0.46544244e-3, maxfun limit exceeded (see ?dsolve,maxfun for details)


with(plots):
unassign('i'):mytab1:=[seq(pt1[i],i=0..M1)]:mytab2:=[seq(pt2[i],i=0..M1)]:mytab3:=[seq(pt3[i],i=0..M1)]:
plot(mytab3,t=0..5,tickmarks=[6, 6],axes=boxed);

but I got an error

Hi experts,

attached the following code,, but i dont know what is the wrong with it, looking forward for helpful advise.

dsys :={diff(u(t),t)=-(N1+M*cos(2*I*omega*t))*u(t)-1+v(t)*exp(-2*I*omega*t)+w(t)*exp(2*I*omega*t), diff(v(t),t)=-(N1+I*Delta-2*M*exp(2*I*omega*t))*v(t)-(N1+u(t))*exp(2*I*omega*t)-2*M, diff(w(t),t)=-(N1-I*Delta-2*M*exp(-2*I*omega*t))*w(t)-(N1+u(t))*exp(-2*I*omega*t)-2*M}:
res:=dsolve(dsys union {u(0)=-1,v(0)=0,w(0)=0},numeric,output=listprocedure,maxfun=0):
plots[odeplot](res,[[t,(Re(w(t)))]],0..10,axes=boxed,titlefont=[SYMBOL,14],font=[1,1,18],color=black,linestyle=1,tickmarks=[3, 4],font=[1,1,14],thickness=2,titlefont=[SYMBOL,12]);
Warning, computation interrupted

Hi all,

restart;#part1
epsilon:=5:Delta1:=2:Delta2:=-4: N1:=1000:
dsys :={diff(x(t),t)=-I*Delta1*x(t)+y(t)+epsilon, diff(y(t),t)=-I*Delta2*y(t)+x(t)*z(t), diff(z(t),t)=-2*(conjugate(x(t))*y(t)+conjugate(y(t))*x(t))};

res:=dsolve(dsys union {x(0)=2*I,y(0)=0,z(0)=1},numeric,output=listprocedure);

P1:=plots:-odeplot(res,[[t,Im(y(t))],[t,Re(x(t))]],0..2):

/ d
{ --- x(t) = -2 I x(t) + y(t) + 5,
\ dt

d
--- y(t) = 4 I y(t) + x(t) z(t),
dt

d ____ ____ \
--- z(t) = -2 x(t) y(t) - 2 y(t) x(t) }
dt /
tit:=sprintf("D1=%g,D2=%g",Delta1,Delta2);
"D1=2,D2=-4"
plots[odeplot](res,[[t,Im(y(t))]],0..200,axes=boxed,titlefont=[SYMBOL,14],font=[1,1,18],color=black,linestyle=1,tickmarks=[3, 4],font=[1,1,14],thickness=2,titlefont=[SYMBOL,12]);
Warning, cannot evaluate the solution further right of 90.013890, maxfun limit exceeded (see ?dsolve,maxfun for details)

when I increase the time give this msn:

Warning, cannot evaluate the solution further right of 90.013890, maxfun limit exceeded (see ?dsolve,maxfun for details)

Hi,

I got the Real and Imaginary of an expression J1 

assume(d,real):

Gamma:=0.04:tau:=10*Pi:j:=0:

J1:=(exp((1-I*d)*Gamma*tau)-1)/((1-I*d));

J1mod:=simplify((Re(J1))^2+(Im(J1))^2): (I works here this amont is real)

################

but when I change the expression  for J1 to be

J1:=((2*e^(-2^(-j-1)*(1-I*d))-e^(-2^(-j)*(1-I*d))-1)*exp((1-I*d)*Gamma*tau)-1)/((1-I*d)):

J1mod:=simplify((Re(J1))^2+(Im(J1))^2): 

J1mod here is complex(I dont know why? it doesnt separate the real and the im )

Any comments will help

Thanks

First 7 8 9 10 11 12 13 Page 9 of 13