aoakindele

10 Reputation

2 Badges

0 years, 62 days

MaplePrimes Activity


These are replies submitted by aoakindele

@Carl Love Now i get ......thank u sir

@tomleslie Thanks so much for the solution you provided but sir how can can maple show the numerical method which it has used to solve the problem or which numerical method is used in the above problem??(is it runge kutta with shooting, shooting or what??)......Thanks  

@tomleslie it really help

@Carl Love pls can u assist me on this tooerror_5.mw

@acer F!!(0).......F prime prime(0)....not sure if thats how to write d code


 

 

restart;

  with(plots):
kernelopts(version);

#

# Define the ODE system

#

  odeSys:= { (diff(F(eta), eta, eta, eta))*(1+epsilon-alpha*((diff(F(eta), eta, eta))^2))+F(eta)*(diff(F(eta), eta, eta))+S*(diff(F(eta), eta))-(1/2)*S*eta*(diff(F(eta), eta, eta))-(diff(F(eta), eta))^2-M*(diff(F(eta), eta)), (diff(theta(eta), eta, eta))*(1+R)-delta*(diff(F(eta), eta))^2-Pr*((3/2)*S*theta(eta)+(1/2)*S*eta*(diff(theta(eta), eta))-2*(diff(F(eta), eta))*theta(eta)+F*(diff(theta(eta), eta)))};

#

# Define the first set of boundary conditions

#

  bcs1:= { F(0) = 0, (D(F))(0) = 1+lambda*(1+epsilon)*(D@@(F))(0) , theta(0) = 1,(1+epsilon)*(D@@(F))(inf)=gamma*theta(inf),F(inf)=(inf*S)/2, theta(inf) = 0

         }:

 

  epsilonVals:=[0.018, 0.5, 3]:

  for k from 1 by 1 to numelems(epsilonVals) do

      pList:=[ R = 0.5, M = 0.5,lambda=0.2,gamma=1, S = 1.5, delta = 0.3, Pr = 1.5, alpha = 0.4, epsilon = epsilonVals[k],inf=1]:

      sol1[k]:= dsolve( eval

                        ( `union`( odeSys, bcs1),

                           pList

                        ),

                        numeric

                      );

    od:
 colors:=[red,green, blue]:
  display
  ( [ seq
      ( odeplot
        ( sol1[i],
          [eta, F(eta)],
          eta=0..1,
          color=colors[i]
        ),
        i=1..numelems(epsilonVals)
      )
    ],
    color = [red, green, blue],
    title = typeset( F(eta), " =influence of epsilon on velocity profile "),
    titlefont = [times, bold, 20]
  );

 

`Maple 18.00, IBM INTEL NT, Feb 10 2014, Build ID 922027`

 

{(diff(diff(theta(eta), eta), eta))*(1+R)-delta*(diff(F(eta), eta))^2-Pr*((3/2)*S*theta(eta)+(1/2)*S*eta*(diff(theta(eta), eta))-2*(diff(F(eta), eta))*theta(eta)+F*(diff(theta(eta), eta))), (diff(diff(diff(F(eta), eta), eta), eta))*(1+epsilon-alpha*(diff(diff(F(eta), eta), eta))^2)+F(eta)*(diff(diff(F(eta), eta), eta))+S*(diff(F(eta), eta))-(1/2)*S*eta*(diff(diff(F(eta), eta), eta))-(diff(F(eta), eta))^2-M*(diff(F(eta), eta))}

 

Error, (in dsolve/numeric/bvp/convertsys) F(eta) and F cannot both appear in the given ODE

 

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

NULL


 

Download error.mw

@Carl Love 


 

 

restart;

  with(plots):
kernelopts(version);

#

# Define the ODE system

#

  odeSys:= { (diff(F(eta), eta, eta, eta))*(1+epsilon-alpha((diff(F(eta), eta, eta))^2))+F(eta)*(diff(F(eta), eta, eta))+S*(diff(F(eta), eta))-(1/2)*S*eta*(diff(F(eta), eta, eta))-(diff(F(eta), eta))^2-M*(diff(F(eta), eta)), (diff(theta(eta), eta, eta))*(1+R)-delta*(diff(F(eta), eta))^2-Pr((3/2)*S*theta(eta)+(1/2)*S*eta*(diff(theta(eta), eta))-2*(diff(F(eta), eta))*theta(eta)+F*(diff(theta(eta), eta)))}:

#

# Define the first set of boundary conditions

#

  bcs1:= { F(0) = 0, (D(F))(0) = 1+lambda*(1+epsilon)*(D@@(F))(0) , theta(0) = 1,(1+epsilon)*(D@@(F))(inf)=gamma*theta(inf),F(inf)=(inf*S)/2, theta(inf) = 0

         }:

 

  epsilonVals:=[0.018, 0.5, 3]:

  for k from 1 by 1 to numelems(epsilonVals) do

      pList:=[ R = 0.5, M = 0.5,lambda=0.2,gamma=1, S = 1.5, delta = 0.3, Pr = 1.5, alpha = 0.4, epsilon = epsilonVals[k],inf=1]:

      sol1[k]:= dsolve( eval

                        ( `union`( odeSys, bcs1),

                           pList

                        ),

                        numeric

                      );

    od:
 colors:=[red,green, blue]:
  display
  ( [ seq
      ( odeplot
        ( sol1[i],
          [eta, F(eta)],
          eta=0..1,
          color=colors[i]
        ),
        i=1..numelems(epsilonVals)
      )
    ],
    color = [red, green, blue],
    title = typeset( F(eta), " =influence of epsilon on velocity profile "),
    titlefont = [times, bold, 20]
  );

 

`Maple 18.00, IBM INTEL NT, Feb 10 2014, Build ID 922027`

 

Error, (in dsolve/numeric/bvp/convertsys) too many boundary conditions: expected 5, got 6

 

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

``


 

Download error.mw

@Carl Love 

@Carl Love will effect d correction..........thanks...........pls help me fix error here error.mw 

@tomleslie thank u ........God bless u.......can i use linestyle too??How??

really appreciate your quick response sir but am having a different colour here on my PC.....i will love it if i can differentiate d lines with linestyle[solid,dot,dashdot].....because am still having same color here...............thank u sir.

Page 1 of 1