ecarette

490 Reputation

3 Badges

4 years, 80 days

MaplePrimes Activity


These are Posts that have been published by ecarette

We’re now coming to the end of Pride Month, but that doesn’t mean it’s time to stop celebrating! In keeping with our celebration of queer mathematicians this month, we wanted to take some time to highlight the works of LGBT+ mathematicians throughout history. While it’s impossible to say how some of these individuals would have identified according to our modern labels, it’s still important to recognize that queer people have always existed, and have made and continue to make valuable contributions to the field of mathematics. It’s challenging to find records of LGBT+ people who lived in times when they would have been persecuted for being themselves, and because of that many contributions made by queer individuals have slipped through the cracks of history. So let’s take the time to highlight the works we can find, acknowledge the ones we can’t, and celebrate what the LGBT+ community has brought to the world of mathematics.

If you ask anyone to name a queer mathematician, chances are—well, chances are they won’t have an answer, because unfortunately the LGBT+ community is largely underrepresented in mathematics. But if they do have an answer, they’ll likely say Alan Turing. Turing (1912-1954) is widely considered the father of theoretical computer science, largely due to his invention of the Turing machine, which is a mathematical model that can implement any computer algorithm. So if you’re looking for an example of his work, look no further than the very device you’re using to read this! He also played a crucial role in decoding the Enigma machine in World War II, which was instrumental in the Allies’ victory. If you want to learn more about cryptography and how the field has evolved since Turing’s vital contributions, check out these Maple MathApps on Vigenère ciphers, password security, and RSA encryption. And as if that wasn’t enough, Turing also made important advances in the field of mathematical biology, and his work on morphogenesis remains a key theory in the field to this day. His mathematical model was confirmed using living vegetation just this year!

In 1952, Turing’s house was burgled, and in the course of the investigation he acknowledged having a relationship with another man. This led to both men being charged with “gross indecency”, and Turing was forced to undergo chemical castration. He was also barred from continuing his work in cryptography with the British government, and denied entry to the United States. He died in 1954, from what was at the time deemed a suicide by cyanide poisoning, although there is also evidence to suggest his death may have been accidental. Either way, it’s clear that Turing was treated unjustly. It’s an undeniable tragedy that a man whose work had such a significant impact on the modern era was treated as a criminal in his own time just because of who he loved.

An image of Alan Turing next to a diagram of a Turing machine computing the busy beaver problem.

Antonia J. Jones (1943-2010) was a mathematician and computer scientist. She worked at a variety of universities, including as a Professor of Evolutionary and Neural Computing at Cardiff University, and lived in a farmhouse with her partner Barbara Quinn. Along with her work with computers and number theory, she also wrote the textbook Game Theory: Mathematical Models of Conflict. If you want to learn more about that field, check out this collection of Maple Learn documents on game theory. As a child, Jones contracted polio and lost the use of both of her legs. This created a barrier to her work with computers, as early computers were inaccessible to individuals with physical disabilities. Luckily, as the technology developed and became more accessible, she was able to make more contributions to the field of computing. And that’s especially lucky for banks who like having their money be secure—she then exposed several significant security flaws at HSBC! That just goes to show you the importance of making mathematics accessible to everyone—who knows how many banks’ security flaws aren’t being exposed because the people who could find them are being stopped by barriers to accessibility?

An image of Antonia J. Jones next to the cover of the textbook she wrote: Game Theory: Mathematical models of conflict.

James Stewart (1941-2014) was a gay Canadian mathematician best known for his series of calculus textbooks—yes, those calculus textbooks, the Stewart Calculus series. I’m a 7th edition alumni myself, but I have to admit the 8th edition has the cooler cover. To give you a sense of his work, here’s an example of an optimization problem that could have come straight from the pages of Stewart Calculus. Questions just like this have occupied the evenings of high school and university students for over 25 years. I suspect not all of those students really appreciate that achievement, but nonetheless his works have certainly made an impact! Stewart was also a violinist in the Hamilton Philharmonic Orchestra, and got involved in LGBT+ activism. In the early 1970s, a time where acceptance for LGBT+ people was not particularly widespread (to put it lightly), he brought gay rights activist George Hislop to speak at McMaster University. Stewart is also known for the Integral House, which he commissioned and had built in Toronto. Some may find the interior of the house a little familiar—it was used to film the home of Vulcan ambassador Sarek in Star Trek: Discovery!

An image of James Stewart next to the cover of the 8th edition Stewart Calculus textbook.

Agnes E. Wells (1876-1959) was a professor of mathematics and astronomy at Indiana University. She wrote her dissertation on the relative proper motions and radial velocities of stars, which you can learn more about from this document on the speed of orbiting bodies and this document on linear and angular speed conversions. Wells was also a woman’s rights activist, and served as the chair of the National Woman’s Party. In her activism, she argued that the idea of women “belonging in the home” overlooked unmarried women who needed to earn a living—and women like her who lived with another woman as their partner, although she didn’t mention that part. There is a long-standing prejudice against women in mathematics, and it’s the work of women like Wells that has helped our gradual progress towards eliminating that prejudice. To be a queer woman on top of that only added more barriers to Wells’ career, and by overcoming them, she helped pave the way for all queer women in math.

An image of Agnes E. Wells next to a table from her dissertation on the movement of stars.

Now, there is a fair amount of debate as to whether or not our next mathematician really was LGBT+, but there is sufficient possibility that it’s worth giving Sir Isaac Newton a mention. Newton (1642-1727) is most known for his formulation of the laws of gravity, his invention of calculus (contended as it is), his work on optics and colour, the binomial theorem, his law of temperature change… I could keep going; the list goes on and on. It’s unquestionable that he had a significant impact on the field of mathematics, and on several other fields of study to boot. While we can’t know how Newton may have identified with any of our modern labels, we do know that he never married, nor “had any commerce with women”[a], leading some to believe he may have been asexual. He also had a close relationship with mathematician Nicolas Fatio de Duillier, which some believe may have been romantic in nature. In the end, we can never say for sure, but it’s worth acknowledging the possibility. After all, now that more and more members of the LGBT+ community are feeling safe enough to tell the world who they are, we’re getting a better sense of just how many people throughout history were forced to hide. Maybe Newton was one of them. Or maybe he wasn’t, but maybe there’s a dozen other mathematicians who were and hid it so well we’ll never find out. In the end, what matters more is that queer mathematicians can see themselves in someone like Newton, and we don’t need historical certainty for that.

An image of Isaac Newton next to a Maple Learn document depicting how light passing through a prisim becomes a rainbow.

So there you have it! Of course, this is by no means a comprehensive list, and it’s important to recognize who’s missing from it—for example, this list doesn’t include any people of colour, or any transgender people. Sadly, because of the historical prejudices and modern biases against these groups, they often face greater barriers to entry into the field of mathematics, and their contributions are frequently buried. It’s up to us in the math community to recognize these contributions and, by doing so, ensure that everyone feels like they can be included in the study of mathematics.

We all know that math is beautiful in and of itself—but sometimes students might need a little convincing. What better way to do that then sprucing up your math with a little colour? With Maple Learn, plot colours are fully customizable. We have several colour palettes to choose from—want your document to evoke the delicate tones of springtime? Looking for a palette that’s colourblind friendly? Or maybe you’re just nostalgic for the colours of Maple V? All these options and more are available for making your graphs colourful and coordinated. But maybe you’re the kind of person who wants to go against the grain, and you laugh in the face of predetermined colour coordination. Don’t worry, we’ve got you covered too! With our colour selector, you can also choose your own custom colours. The full colour spectrum is right at your fingertips. To learn more about how to customize the colours on your document, check out this How-To guide.

And of course, the potential for colour inevitably leads to the potential for art. Our Maple Learn Art Gallery has plenty of fun and colourful works you can admire and contemplate (and maybe even draw inspiration from!). One of our most recent and most colourful additions is this document showcasing the history of the rainbow pride flag, in honour of June being Pride Month. You can use the slider to move through time, letting you see how the colours on the flag evolved and read about the meanings behind them. And, thanks to the colour selector, the colours match the precise shades used for the original flags! That’s the magic of hexadecimal colours for you.


Hold on—the magic of hexadecimal colours, I hear you ask? What an enticing concept. If only we had some kind of document, perhaps one made in Maple Learn, that explained how hexadecimal colours worked and included an interactive example so that you could easily see how the red, green, and blue colour values blend together to create any given colour… Too bad we don’t!

Just kidding. Of course we do.

If all these colours have inspired you, be sure to check out our Call for Creative Works for the upcoming Maple Conference! Maybe your colourful creation could be this year’s winner.

Happy Pride Month, everyone! June is a month for recognizing and celebrating the LGBT+ community. It was started to mark the anniversary of the Stonewall riots, which were a landmark event in the fight for LGBT+ rights. We celebrate Pride Month to honour those who have fought for their rights, acknowledge the struggles the LGBT+ community continues to face to this day, and celebrate LGBT+ identities and culture.

This Pride Month, I want to give a special shoutout to those in the math community who also identify as LGBT+. As a member of the LGBT+ community myself, I’ve noticed a fair amount of stigma against being queer in math spaces—and surprisingly often coming from within the community itself. It’s one thing for us to make jokes amongst ourselves about how none of us can sit in chairs properly (I don’t even want to describe how I’m sitting as I write this), but the similar jokes I’ve heard my LGBT+ friends making about being bad at math are a lot more harmful than they might realize. And of course it isn’t just coming from within the community—many people have a notion (whether conscious or unconscious) that all LGBT+ people are artistically inclined, not mathematical or scientific. Obviously, that’s just not true! So I want to spend some time celebrating queerness in mathematics, and I invite you to do the same.

One of the ways we’re celebrating queerness in math here at Maplesoft is with new Pride-themed Maple Learn documents, created by Miles Simmons. What better way to celebrate Pride than with trigonometry? This document uses sinusoidal transformations to mimic a pride flag waving in the wind. You can adjust the phase shift, vertical shift, horizontal stretch, and vertical stretch to see how that affects the shape of the flag. Then, you can watch the animation bring the flag to life! It’s a great way to learn about and visualize the different ways sinusoidal waves can be transformed, all while letting your colours fly!

 

A screenshot of a Maple Learn document. The plot window shows a pride flag constructed from sine waves, and the document describes how we will be adding wind in the form of function transformations.

For more trigonometry, you can also check out this fun paint-by-numbers that can help you practice the sines, cosines, and tangents of special angles. And, as you complete the exercise, you can watch the Pride-themed image come to life! Nothing like adding a little colour to your math practice to make it more engaging.

 

A screenshot of a Maple Learn document showing a partially coloured paint-by-numbers grid, where the numbers are special trig angles.

If you’re looking for more you can do to support LGBT+ mathematicians this Pride Month, take a look at Spectra, an association for LGBT+ mathematicians. Their website includes an “Outlist” of openly LGBT+ mathematicians around the world, and contact information if you want to learn more about their experiences. The Fields Institute has also hosted LGBT+Math Days in the past, which showcases the research of LGBT+ mathematicians and their experiences of being queer in the math community. Blog posts like this one by Anthony Bonato, a math professor at Toronto Metropolitan University, and interviews like this one with Autumn Kent, a math professor at the University of Wisconsin-Madison, can also help allies in mathematics to understand the experiences of their queer colleagues and how to best support them. Math is everywhere and for everyone—so let’s make sure that the systems we use to teach and explore math are for everyone too!

Happy Pride! 🏳️‍🌈

On this day 181 years ago, Christian Doppler first presented the effect that would later become known as the Doppler effect. In his paper “On the coloured light of the binary stars and some other stars of the heavens”, he proposed (with a great deal of confidence and remarkably little evidence) that the observed frequency of a wave changes if either the source or observer is moving. Luckily for Doppler, he did turn out to be right! Or at least, right about the effect, not right about supernovas actually being binary stars that are moving really fast. The effect was experimentally confirmed a few years later, and it’s now used in a whole variety of interesting applications.

To learn more about how the Doppler effect works, take a look at this Maple MathApp. You can adjust the speed of the jet to see how the frequency of the sound changes, and add an observer to see what they perceive the sound as. You can even break the sound barrier, although the poor observer might not like that so much!

 

A screenshot of a Maple MathApp, showing a visual representation of sound waves coming off a moving jet, with sliders to adjust the speed.

 

For Maple users, you can also check out the MathApp on the relativistic Doppler effect. You’ll find it in the Natural Sciences section, under Astronomy and Earth Sciences. Settle in to watch those colours come to life!

A screenshot of a Maple MathApp showing a spectrum of colours, with sliders to control the initial wavelength of the light and a dial showing the current velocity of the viewer

 

But wait, I mentioned interesting applications, didn’t I? And don’t worry, I’m not just here to talk about sirens moving past you or figuring out the speed of stars (although admittedly, that one is pretty interesting too). No, I’m talking about robots. Some robots make use of the Doppler effect to help monitor their own speed, by bouncing sound waves off the floor and measuring the frequency of the reflected wave. A large change in frequency means that robot is zooming!

The Doppler effect is also used in the medical field—Doppler ultrasonography uses the Doppler effect to determine and visualize the movement of tissues and body fluids like blood. It works by bouncing sound waves off of moving objects (like red blood cells) and measuring the result. The difference in frequency tells you the speed and direction of the blood flow, in accordance with the Doppler effect! Pretty neat, if you ask me.

And like any good scientific phenomena, the Doppler effect can be used for both work and pleasure. The Leslie speaker is a type of speaker invented in the 1940s that modifies the sound by rotating a baffle chamber, or drum, in front of the loudspeakers. The change in frequency dictated by the Doppler effect causes the pitch to fluctuate, creating a distinct sound that I can only describe as “woobly”. The speaker can be set to either “chorus” or “tremolo”, depending on how much woobliness the user wants. It was typically used with the Hammond organ, and you can hear it in action here!

You know who else uses the Doppler effect? Bats. Since they rely on echolocation to get around, they need some way to account for the fact that the returning sound waves won’t be at the same pitch that they were sent out at. This fantastic video explains it far better than I ever could, and involves putting bats on a swing, which I think should be enough of a recommendation all on its own.

That’s it for our little foray into the Doppler effect, although there’s still a lot more that could be said about it. Try checking out those Maple MathApps for inspiration—who knows, maybe you’ll find a whole new use for this fascinating effect!

Yes, that’s right! You can now add images to your Maple Learn documents! Whether you’re adding a diagram to help visualize a physics concept, inserting the logo or your school or organization, or just adding a cute selfie so that everyone knows how great you looked while making this document, you can add any image you’d like using the image icon on the toolbar. You’ll need to be logged in to access this new feature, but luckily making an account is completely free!

To insert the image, just click the image icon and select the image you want from your computer or tablet. To resize it, highlight the image and click the image icon again. You can also turn the image into a hyperlink by highlight the image and clicking the link button! Now, not only will your document look snazzy, but it can take you anywhere you’d like.

Images aren’t the only exciting new feature in Maple Learn. If you were excited by all the circles in the last set of updates, then you’re going to love this one, because we’ve introduced the Circle command! Just plug in the centre of the circle and the radius, and bam, circle. What’s more, you can easily turn your circle into an arc by adding the angle measures of the two endpoints of the arc. Infinitely customizable round objects, right at your fingertips. To learn more, check out the How-To documents Using the Circle Command and Plotting Arcs.

Ancient Greek mathematicians thought that there was nothing that couldn’t be constructed with only a compass and a straightedge. A wise math professor once tasked my class with using these same tools to draw a pretty picture. With Maple Learn’s Circle function and ability to graph straight lines, you have all the tools you need to complete this same task! We look forward to seeing the results.

 

1 2 3 4 5 Page 2 of 5