26 Reputation

4 Badges

12 years, 88 days

MaplePrimes Activity

These are questions asked by lxyuzs

comn := choose([u, v, mu, nu], 2):

def := seq(seq(seq(Physics[`.`](Dagger(Ket(aa, k)), Ket(bb, m)) = Physics[`.`](Ket(bb, m), Dagger(Ket(aa, k))), `in`(aa, comn[i][1])), `in`(bb, comn[i][2])), i = 1 .. nops(comn)), seq(seq(seq(Dagger(Physics[`.`](Dagger(Ket(aa, k)), Ket(bb, m)) = Physics[`.`](Ket(bb, m), Dagger(Ket(aa, k)))), `in`(aa, comn[i][1])), `in`(bb, comn[i][2])), i = 1 .. nops(comn));

d1 := Physics[`.`...

any of the numerical factors that multiply the successive terms in the expansion of an expression of the form  (x + a)^n,  for integral n,  in accordance with the binomial  theorem. These are any terms of the form

how to get it.


but ,i get a anwer that i don't want´╗┐

Hi, friends

The physics package was provided a good tool to compute Commutator or anticommutator relations. Here, I met some problems.

Example 1:

      restart: with(Physics):Setup(mathematicanotaion=true):

      Setup (op={p[x],p[y]},p[z]):

      alg:=%commutator(p[z],p[x])=2p[x], %commutator(p[z],p[y])=-2p[y], %commutator(p[x],p[y])= p[z]

there are several method to provide solve recurrence problems  in Maple,such as define ,rsolve,etc.here ,i meet a problem.

i want to compute the function Gamma(n), if n is a posint ,only given recurrence relation f(z)=(z-1)f(z-1),initial condition,f(0)=1,then i can get the true result with rsolve,of couse,i had made  an ansatz that z is n::posint.yet ,z is not posint? To suppose z  equal to 5/2, (2*n+1)/2 more generally,how can get the answer((2n-1)!!*Pi/2^n).


> s := series(sin(x), x, 9); seriestoalgeq(s, y(x));
                  1  3    1   5    1    7    / 9\
              x - - x  + --- x  - ---- x  + O\x /

1 2 3 4 Page 1 of 4