## 559 Reputation

6 years, 302 days

## use simplify...

 > restart: f:=simplify(cosh(t)/(cosh((17/15)*t)+cosh(t)));
 (1)
 > evalf(Int(f, t = 0 .. infinity));
 >
 >
 > evalf(int(f, t = 0 .. infinity));
 >
 >
 (2)
 >

## two ways...

 > restart:
 > sort(x+y+z, order = tdeg(z, y, x));
 (1)
 > sort( x+y+z, order = plex(z, y, x));
 (2)
 >

## one way...

 > restart;
 > with(Physics):
 >
 > Setup(mathematicalnotation = true):
 > Setup(quantumop = {Q,P}, algebrarule = {%AntiCommutator(Q[i], P[k]) = 2*KroneckerDelta[i, k], %Commutator(Q[j], P[k]) = 2*I*(add(LeviCivita[j, k, l]*Q[l], l = 1 .. 3))}):
 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >

## see ?userinfo...

from maple help page :

userinfo - print useful information to the user

Calling Sequence
userinfo(lev, fn, e1, e2 ... );

 The user must assign a non-negative integer to some of the entries in the global table infolevel before invoking the procedure. If the entry infolevel[all] is a non-negative integer then every userinfo call will print if its level is less than or equal to infolevel[all] .

 Throughout the Maple library userinfo statements have been used with the following conventions:
Level 1: reserved for information that the user must be told.
Level 2,3: general information, including technique or algorithm being used.
Level 4,5: more detailed information about how the problem is being solved

The item infolevel[hints] is initialized to a value 1. Maple sometimes returns unevaluated answers when it does not have enough information to produce an explicit answer (because, for example, such an answer would not be correct over all complex numbers). This facility is intended to report hints as to which further information, given through assume(), would enable Maple return an explicit answer.

## as preben says,every thing is ok...

actucallyA is, A=0.5+sqrt(3)/2*I .and all (x+y) can simplify from Numerator and denominator of your A and actually A is independent of x and y.

 A := (1/2)*(-x-y+(-3*(x+y)^2)^(1/2))/(x+y)

 x := 10+I y := 10-I

 -1/2+(1/40)*(-1200)^(1/2) -.5000000000+.8660254038*I

 x := 10+10*I y := 10-I (10/481-(9/962)*I)*((-20-9*I)+(-957-1080*I)^(1/2)) -.5000000000-.8660254038*I

 x := 10+5*2^(1/2)+(5*I)*2^(1/2) y := 10-I (1/2)*((-20+I)-5*2^(1/2)-(5*I)*2^(1/2)+(-3*(20-I+5*2^(1/2)+(5*I)*2^(1/2))^2)^(1/2))/(20-I+5*2^(1/2)+(5*I)*2^(1/2)) -.5000000000-.8660254035*I

## make local in proc...

in printf u should write everyhting in string , "Ghana Chocolates" . and make local varibales in the procedure. good luck

 Factory Simulation: Ghana Chocolates Chocolate Factory Simulation Project .     W    O(t,t+1)        B(t)        T(t)        F(t)        R(t)     ---------------------------------------------------------------------------     1         50.         50.        250.        250.        150.        2        100.        100.        200.        200.        200.        3          0.          0.        300.        300.         50.        4         50.         50.          0.          0.        400.        5         50.        100.        125.        125.        325.        6         50.         50.        120.        120.        280.        7         50.         50.        117.        117.        283.        8         50.         50.        114.        114.        286.        9         50.         50.        112.        112.        288.       10         50.         50.        111.        111.        289.     ---------------------------------------------------------------------------     W          50      875/18          50       ---------------------------------------------------------------------------

## use two loops...

i write a procedure , which M is input for the procedure.

 > restart:
 > mat:=proc(M) local A,i,j;A:=Matrix(M,M): for i to M do for j to M do A(i,j):=(psi||1||(i-1))((2*j-1)/(2*m)); od;od;end proc;
 (1)
 > mat(3);
 (2)
 >
 >

## i have answered exactly the same questio...

http://www.mapleprimes.com/questions/201345-Geom3d-Seq-Of-Point--In-R3

 > restart:with(plots):
 >
 > Tab := [[0, 0, 0], [1/5, 0, 0], [2/5, 0, 0], [0, 1/5, 0], [1/5, 1/5, 0], [2/5, 1/5, 0], [0, 2/5, 0], [1/5, 2/5, 0], [2/5, 2/5, 0], [0, 0, 1/5], [1/5, 0, 1/5], [2/5, 0, 1/5], [0, 1/5, 1/5], [1/5, 1/5, 1/5], [2/5, 1/5, 1/5], [0, 2/5, 1/5], [1/5, 2/5, 1/5], [2/5, 2/5, 1/5], [0, 0, 2/5], [1/5, 0, 2/5], [2/5, 0, 2/5], [0, 1/5, 2/5], [1/5, 1/5, 2/5], [2/5, 1/5, 2/5], [0, 2/5, 2/5], [1/5, 2/5, 2/5], [2/5, 2/5, 2/5]];
 (1)
 > pointplot3d(Tab,color = magenta,axes = normal, symbol = box);
 >

## use pointplot3d...

 > restart:with(plots):
 > x := [seq]( (1/5)*i,i=0..12);  #  x[i] the x-coordinate
 > y := [seq]( (1/5)*j,j=0..12); # y[j] the y-coordinate
 > t := [seq]( (1/5)*k,k=0..12);  #  t[k] the t-coordinate
 >
 (1)
 > listplot3d([x,y,t]);
 > pointplot3d([seq]([op(i,x),op(i,y),op(i,t)],i=1..nops(x)),color = magenta,axes = normal, symbol = box);
 >

## remove print from your function...

 Fun := proc (x) options operator, arrow; x^2 end proc

 A := [1, 2, 3, 4]

 [1, 4, 9, 16] 1, 4, 9, 16

it is for 15 number of data.

maple.mws

testfile.txt

## your boundary condition are incorrect...

az u can see from the wroksheet i uploaded, u can solve your problem without your boundary conditions, but with them u can not .
i changed your way of typing , and also changed theta[p] to sigma .
u have write G(10)=-f(10) while you have note assigned f(10):=0 , so never use this . also u have written L:=[0.2]; and i do not know where u have used it in your equations.

dsolve without your boundary take alot of memory and time, so i terminated the process. but your problem,is with your boundary conditions,and actually i do not know ho to correct them. maybe preben alsholm can help. good luck

 > restart:
 > fixedparameter := {M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1}:
 > Eq1 := eval((1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))),fixedparameter);
 (1)
 > Eq2 := eval(G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) ,fixedparameter);
 (2)
 > Eq3 := eval(G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) ,fixedparameter);
 (3)
 > Eq4 := eval(G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta),fixedparameter);
 (4)
 > Eq5 := eval((1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(sgima(eta)-theta(eta)),fixedparameter);
 (5)
 > Eq6 := eval(2*F(eta)*sgima(eta)+G(eta)*(diff(sgima(eta), eta))+L0*B*(sgima(eta)-theta(eta)) ,fixedparameter);
 (6)
 > bcs := {f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0,F(10) = 0,G(10) = 0,H(10) = n,theta(10) = 0,sgima(10) = 0};
 (7)
 > L := [0.2]:
 >
 > dsolve({seq(Eq||i,i=1..6)},bcs);dsolve({seq(Eq||i,i=1..6)},bcs,numeric);
 > dsolve({seq(Eq||i,i=1..6)});
 > #for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), sgima(eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do
 >

## see maple help...

Examples

 >

Example 1: Basic usage

 >
 (1.1)
 >
 (1.2)
 >
 (1.3)
 >
 (1.4)
 >
 (1.5)

The linearization point  does not give exact zero. Compute linear model for a tighter tolerance

 >
 Warning, linpoint is not an equilibrium point
 (1.6)
 >
 (1.7)

Disable the checkpoint option for the same setting of the tolerance

 >
 (1.8)

Example 2: Use of user-defined functions

 > sys2 := {piecewise(x[1](t)<0, x[1](t), x[2](t) + x[1](t)^2) * piecewise(u(t)<0, cos(y(t)), sin(y(t))) = sin(x[1](t)^2) + 5 * y(t) + diff(x[1](t), t, t), y(t) - x[1](t)^2 + u(t)*x[1](t), diff(x[2](t), t) = f(x[1](t), u(t))}; user_function := [     f,     [float, float],     float,     proc(x, y)     local d1, d2;         d1 := cos(x)+x^2;         d2 := y*d1 + y^2;         return d1*x+d2*y- exp(d1);     end proc     ];
 (1.9)
 >
 (1.10)
 >
 (1.11)
 >
 (1.12)
 >
 (1.13)

Example of the statevariable, inputvariable, and outputvariable options

 >
 (1.14)
 >
 (1.15)

Example 3: Inverted pendulum on a moving cart

Variables

 counter-clockwise angular displacement of the pendulum from the upright position angular velocity of the pendulum, position of the cart velocity of the cart, horizontal force applied to the cart

Parameters

 half-length of pendulum mass of the pendulum mass of the cart gravitational constant (9.8 )

 >
 (1.16)

Linearization point is given by:

 >
 (1.17)
 >
 (1.18)

The state-space object given by lin_model3[1] can be used to construct a stabilizing controller using linear control theory.

 >
 (1.19)
 >

## not answer, just as an idea...

 > restart:
 > sys:={diff(Y(x, t), x\$2) = exp(-2*x*b)*(A(x, t)-Y(x, t)), diff(A(x, t), t) = exp(-2*x*b)*(Y(x, t)-A(x, t))};
 (1)
 > ans:=pdsolve(sys);
 (2)
 > PDEtools[build](op(ans));
 (3)
 > # up to here,the answer witouht inital conditons and boundaries #
 >
 >
 >
 > SYS:={isolate(op(1,sys),Y(x,t)),isolate(op(2,sys),A(x,t))};
 (4)
 > ibc:={A(x, 0) = 0, Y(0, t) = 0.1, D[1](Y)(0, t) =0};
 (5)
 >
 > Y(x,t):=(rhs(op(2,SYS)));
 (6)
 > PDE:=diff(Y(x, t), x\$2) = exp(-2*x*b)*(A(x, t)-Y(x, t));pdsolve(PDE);PDEtools[build](op(%));
 (7)
 > # this PDE actually is implification of system of PDEs, i think if u can convert your boundary like this, u can solve numerically your system, but actually i do not know how #
 >
 >
 >

## use evalr...

 `±`(.314, 0.401e-3)

 (1/2)*arctan(((1/5000+sin((13/30)*Pi)+sin((1/10)*Pi))*tan(1/10000+(1/3)*Pi)-tan(1/10000)*(-1/5000+sin((7/30)*Pi)+sin((13/30)*Pi)-tan(1/10000+(1/3)*Pi)*(1/5000+cos((1/10)*Pi)+cos((7/30)*Pi)))+tan(1/10000+(1/3)*Pi)*(1/5000+sin((1/10)*Pi)-sin((7/30)*Pi)-tan(1/10000+(1/3)*Pi)*(-1/5000-cos((7/30)*Pi)+cos((13/30)*Pi))-tan(1/10000)*(-1/5000-cos((1/10)*Pi)-cos((13/30)*Pi))))/((-1/5000+cos((13/30)*Pi)+cos((1/10)*Pi))*tan(-1/10000+(1/3)*Pi)+tan(1/10000)*(-1/5000-cos((7/30)*Pi)+cos((13/30)*Pi)-tan(1/10000+(1/3)*Pi)*(1/5000-sin((1/10)*Pi)+sin((7/30)*Pi)))+tan(-1/10000+(1/3)*Pi)*(-1/5000+cos((1/10)*Pi)+cos((7/30)*Pi)-tan(-1/10000+(1/3)*Pi)*(1/5000-sin((7/30)*Pi)-sin((13/30)*Pi))-tan(1/10000)*(1/5000+sin((13/30)*Pi)+sin((1/10)*Pi)))))+(1/2)*arctan(((-1/5000+sin((13/30)*Pi)+sin((1/10)*Pi))*tan(-1/10000+(1/3)*Pi)+tan(1/10000)*(-1/5000+sin((7/30)*Pi)+sin((13/30)*Pi)-tan(1/10000+(1/3)*Pi)*(1/5000+cos((1/10)*Pi)+cos((7/30)*Pi)))+tan(-1/10000+(1/3)*Pi)*(-1/5000+sin((1/10)*Pi)-sin((7/30)*Pi)-tan(-1/10000+(1/3)*Pi)*(1/5000-cos((7/30)*Pi)+cos((13/30)*Pi))+tan(1/10000)*(-1/5000-cos((1/10)*Pi)-cos((13/30)*Pi))))/((1/5000+cos((13/30)*Pi)+cos((1/10)*Pi))*tan(1/10000+(1/3)*Pi)-tan(1/10000)*(-1/5000-cos((7/30)*Pi)+cos((13/30)*Pi)-tan(1/10000+(1/3)*Pi)*(1/5000-sin((1/10)*Pi)+sin((7/30)*Pi)))+tan(1/10000+(1/3)*Pi)*(1/5000+cos((1/10)*Pi)+cos((7/30)*Pi)-tan(1/10000+(1/3)*Pi)*(-1/5000-sin((7/30)*Pi)-sin((13/30)*Pi))+tan(1/10000)*(1/5000+sin((13/30)*Pi)+sin((1/10)*Pi))))) .3141594479

 (1/2)*arctan(((-1/5000+sin((13/30)*Pi)+sin((1/10)*Pi))*tan(-1/10000+(1/3)*Pi)+tan(1/10000)*(-1/5000+sin((7/30)*Pi)+sin((13/30)*Pi)-tan(1/10000+(1/3)*Pi)*(1/5000+cos((1/10)*Pi)+cos((7/30)*Pi)))+tan(-1/10000+(1/3)*Pi)*(-1/5000+sin((1/10)*Pi)-sin((7/30)*Pi)-tan(-1/10000+(1/3)*Pi)*(1/5000-cos((7/30)*Pi)+cos((13/30)*Pi))+tan(1/10000)*(-1/5000-cos((1/10)*Pi)-cos((13/30)*Pi))))/((1/5000+cos((13/30)*Pi)+cos((1/10)*Pi))*tan(1/10000+(1/3)*Pi)-tan(1/10000)*(-1/5000-cos((7/30)*Pi)+cos((13/30)*Pi)-tan(1/10000+(1/3)*Pi)*(1/5000-sin((1/10)*Pi)+sin((7/30)*Pi)))+tan(1/10000+(1/3)*Pi)*(1/5000+cos((1/10)*Pi)+cos((7/30)*Pi)-tan(1/10000+(1/3)*Pi)*(-1/5000-sin((7/30)*Pi)-sin((13/30)*Pi))+tan(1/10000)*(1/5000+sin((13/30)*Pi)+sin((1/10)*Pi)))))-(1/2)*arctan(((1/5000+sin((13/30)*Pi)+sin((1/10)*Pi))*tan(1/10000+(1/3)*Pi)-tan(1/10000)*(-1/5000+sin((7/30)*Pi)+sin((13/30)*Pi)-tan(1/10000+(1/3)*Pi)*(1/5000+cos((1/10)*Pi)+cos((7/30)*Pi)))+tan(1/10000+(1/3)*Pi)*(1/5000+sin((1/10)*Pi)-sin((7/30)*Pi)-tan(1/10000+(1/3)*Pi)*(-1/5000-cos((7/30)*Pi)+cos((13/30)*Pi))-tan(1/10000)*(-1/5000-cos((1/10)*Pi)-cos((13/30)*Pi))))/((-1/5000+cos((13/30)*Pi)+cos((1/10)*Pi))*tan(-1/10000+(1/3)*Pi)+tan(1/10000)*(-1/5000-cos((7/30)*Pi)+cos((13/30)*Pi)-tan(1/10000+(1/3)*Pi)*(1/5000-sin((1/10)*Pi)+sin((7/30)*Pi)))+tan(-1/10000+(1/3)*Pi)*(-1/5000+cos((1/10)*Pi)+cos((7/30)*Pi)-tan(-1/10000+(1/3)*Pi)*(1/5000-sin((7/30)*Pi)-sin((13/30)*Pi))-tan(1/10000)*(1/5000+sin((13/30)*Pi)+sin((1/10)*Pi))))) -0.4006133e-3