mehdi jafari

559 Reputation

13 Badges

6 years, 306 days

MaplePrimes Activity


These are questions asked by mehdi jafari

i have a function which contains Ln and arctan fanctions in which the output function is complex.
how can i implicitplot this complex function? tnx for the help
 

restart

with(plots, implicitplot)

ode := diff(y(w), w)+(sqrt((12*Pi)(y(w)^2+m^2*w^2))*y(w)+m^2*w)/y(w) = 0

diff(y(w), w)+(2*3^(1/2)*Pi(y(w)^2+m^2*w^2)^(1/2)*y(w)+m^2*w)/y(w) = 0

(1)

Ans := dsolve([ode])

[{ln(w)+(1/4)*ln(-m^4-2*m^2*y(w)^2/w^2-y(w)^4/w^4+12*y(w)^2*Pi/w^2)-(3/2)*arctan((1/4)*(-2*m^2-2*y(w)^2/w^2+12*Pi)/(3*Pi*m^2-9*Pi^2)^(1/2))*Pi/(3*Pi*m^2-9*Pi^2)^(1/2)+(1/4)*ln(2*Pi^(1/2)*3^(1/2)*y(w)/w-y(w)^2/w^2-m^2)-(3/2)*arctan((1/2)*(2*Pi^(1/2)*3^(1/2)-2*y(w)/w)/(m^2-3*Pi)^(1/2))/((3*m^2-9*Pi)/Pi)^(1/2)-(1/4)*ln(2*Pi^(1/2)*3^(1/2)*y(w)/w+m^2+y(w)^2/w^2)+(3/2)*arctan((1/2)*(2*y(w)/w+2*Pi^(1/2)*3^(1/2))/(m^2-3*Pi)^(1/2))/((3*m^2-9*Pi)/Pi)^(1/2)-_C1 = 0}]

(2)

P:=subs(y(w)=Y,eval(lhs(Ans[1, 1]), [_C1 = 0, m = 1]))

ln(w)+(1/4)*ln(-1-2*Y^2/w^2-Y^4/w^4+12*Y^2*Pi/w^2)-(3/2)*arctan((1/4)*(-2-2*Y^2/w^2+12*Pi)/(-9*Pi^2+3*Pi)^(1/2))*Pi/(-9*Pi^2+3*Pi)^(1/2)+(1/4)*ln(2*Pi^(1/2)*3^(1/2)*Y/w-Y^2/w^2-1)-(3/2)*arctan((1/2)*(2*Pi^(1/2)*3^(1/2)-2*Y/w)/(1-3*Pi)^(1/2))/((-9*Pi+3)/Pi)^(1/2)-(1/4)*ln(2*Pi^(1/2)*3^(1/2)*Y/w+1+Y^2/w^2)+(3/2)*arctan((1/2)*(2*Y/w+2*Pi^(1/2)*3^(1/2))/(1-3*Pi)^(1/2))/((-9*Pi+3)/Pi)^(1/2)

(3)

implicitplot(P,w=-10..0,Y=0..10)

 

evalf((eval(P,[w=1,Y=1])))

1.655474573+.8307038310*I

(4)

 

 


 

Download P2.mw

how i can solve a system of integral equations? thanks for the help.
 

restart; with(LinearAlgebra); with(VectorCalculus)

pin1 := 1858.; pout1 := 0; pin2 := 0.1858e5; pout2 := 0; S := 1; T := 10; Fa1 := 0.; Fa2 := 0.
``

T[rr] := -pin-C10*simplify(int(B^2*sqrt((r^2-A)/B)^(2+m)/r^3-r/sqrt((r^2-A)/B)^(2-m), r = s .. t))/S^m-C20*simplify(int(r/(B^2*sqrt((r^2-A)/B)^(2-n))-sqrt((r^2-A)/B)^(2+n)/r^3, r = s .. t))/S^n

eq1 := C10*simplify(int((-2*A*r^2+A^2)/(r^3*sqrt((r^2-A)/B)^(2-m)), r = s .. t))/S^m+C20*simplify(int((2*A*r^2-A^2)/(B^2*r^3*sqrt((r^2-A)/B)^(2-n)), r = s .. t))/S^n

eq2 := 2*Pi*simplify(int(T[rr]*r, r = s .. t))-2*Pi*C10*simplify(int((B^4*sqrt((r^2-A)/B)^(2+m)-r^2*sqrt((r^2-A)/B)^m)/(B^2*r), r = s .. t))/S^m-2*Pi*C20*simplify(int((-B^3*r^3+A*B^3*r+r^3)/(B^2*sqrt((r^2-A)/B)^(2-n)), r = s .. t))/S^n

A := 0.50456255261718905958813087648305534133592085046840e-2; B := 1.0000045465297826882965065372650452712135679772907; S := 1; T := 10; Eq1 := simplify(subs([t = sqrt(B*T^2+A), s = sqrt(B*S^2+A)], eq1)); Eq2 := simplify(subs([pin = 1858., t = sqrt(B*T^2+A), s = sqrt(B*S^2+A)], eq2))

6.283156738*(int(0.5045671411e-2*C10*r*(int((2.*r^2-0.5045625526e-2)*(.9999954530*r^2-0.5045602584e-2)^((1/2)*m)/(r^3*(r^2-0.5045625526e-2)), r = 1.002521906 .. 10.00027501))-0.5045625526e-2*C20*r*(int((2.*r^2-0.5045625526e-2)*(.9999954530*r^2-0.5045602584e-2)^((1/2)*n)/((r^2-0.5045625526e-2)*r^3), r = 1.002521906 .. 10.00027501))-1858.008448*r, r = 1.002521906 .. 10.00027501))-6.283128170*C10*(int((.9999954530*r^2-0.5045602584e-2)^((1/2)*m)*(0.13641e-4*r^2-0.5045694353e-2)/r, r = 1.002521906 .. 10.00027501))+6.283156738*C20*(int((0.1364100000e-4*r^3-0.5045694353e-2*r)*(.9999954530*r^2-0.5045602584e-2)^((1/2)*n)/(r^2-0.5045625526e-2), r = 1.002521906 .. 10.00027501))

(1)

``

Eq3 := simplify(subs([t = sqrt(B*T^2+A), s = sqrt(B*S^2+A)], eq1)); Eq4 := simplify(subs([pin = 0.1858e5, t = sqrt(B*T^2+A), s = sqrt(B*S^2+A)], eq2))

6.283156738*(int(0.5045671411e-2*C10*r*(int((2.*r^2-0.5045625526e-2)*(.9999954530*r^2-0.5045602584e-2)^((1/2)*m)/(r^3*(r^2-0.5045625526e-2)), r = 1.002521906 .. 10.00027501))-0.5045625526e-2*C20*r*(int((2.*r^2-0.5045625526e-2)*(.9999954530*r^2-0.5045602584e-2)^((1/2)*n)/((r^2-0.5045625526e-2)*r^3), r = 1.002521906 .. 10.00027501))-18580.08448*r, r = 1.002521906 .. 10.00027501))-6.283128170*C10*(int((.9999954530*r^2-0.5045602584e-2)^((1/2)*m)*(0.13641e-4*r^2-0.5045694353e-2)/r, r = 1.002521906 .. 10.00027501))+6.283156738*C20*(int((0.1364100000e-4*r^3-0.5045694353e-2*r)*(.9999954530*r^2-0.5045602584e-2)^((1/2)*n)/(r^2-0.5045625526e-2), r = 1.002521906 .. 10.00027501))

(2)

  ``

NULL

ANS := fsolve({Eq1 = pout1-pin1, Eq2 = Fa1, Eq3 = pout2-pin2, Eq4 = Fa2}, {C10, C20, m, n})

``

NULL

NULL


 

Download fsolve.mw

Hi dear maple team. i have a question on integration and i need a "real" and "finite" solution with any assumption or options. thanks for the help.


 

restart

f := ((1 - a)^2 + a^2*((1 - exp(-y))*(1 - exp(-x)) - 2 + exp(-x) + exp(-y)) + a*(2 - exp(-x) - exp(-y) + (1 - exp(-y))*(1 - exp(-x))))/(1 - a*exp(-x)*exp(-y))^3;

((1-a)^2+a^2*((1-exp(-y))*(1-exp(-x))-2+exp(-x)+exp(-y))+a*(2-exp(-x)-exp(-y)+(1-exp(-y))*(1-exp(-x))))/(1-a*exp(-x)*exp(-y))^3

(1)

a := 0.3;f

.3

 

(.91+.39*(1-exp(-y))*(1-exp(-x))-.21*exp(-x)-.21*exp(-y))/(1-.3*exp(-x)*exp(-y))^3

(2)

s := 2*evalf(int((int(f*exp(-x)*exp(-y), x = 0 .. y + t,AllSolutions)), y = 0 .. infinity,AllSolutions)) assuming real ;

 

 


 

Download stat1.mw

I have 4 ode equations. i just want to know can i use any option or simplification to have a analytical solution or NOT? Thanks in Advance

 

``

restart:

ode1 := -2*diff(lambda(t),t)*y1(t) - lambda(t)*diff((y1)(t),t)-0*diff(eta(t),t) - diff((y1)(t),t$3) + diff((y1)(t),t)*(y1(t)^2 + y2(t)^2) +4*y1(t)*sqrt(y1(t)^2 + y2(t)^2)*diff(sqrt(y1(t)^2 + y2(t)^2),t)+diff((y1)(t),t)/r^2
+ y1(t)^2*diff(y1(t),t) + y1(t)*y2(t)*diff(y2(t),t) - 2*diff(y1(t),t)/r^2 ;

 

-2*(diff(lambda(t), t))*y1(t)-lambda(t)*(diff(y1(t), t))-(diff(diff(diff(y1(t), t), t), t))+(diff(y1(t), t))*(y1(t)^2+y2(t)^2)+2*y1(t)*(2*y1(t)*(diff(y1(t), t))+2*y2(t)*(diff(y2(t), t)))-(diff(y1(t), t))/r^2+y1(t)^2*(diff(y1(t), t))+y1(t)*y2(t)*(diff(y2(t), t))

(1)

ode2 := diff((lambda)(t),t$2) + lambda(t)*(y1(t)^2 + y2(t)^2) - 2*y1(t)*diff((y1)(t),t$2) - y1(t)^2*(y1(t)^2 + y2(t)^2) - y1(t)^2/r^2 - diff((y1)(t),t)^2 - 2*diff(sqrt(y1(t)^2 + y2(t)^2),t)^2 - 2*sqrt(y1(t)^2 + y2(t)^2)*diff(sqrt(y1(t)^2 + y2(t)^2),t$2) - diff((y2)(t),t)^2 - 2*y2(t)*diff((y2)(t),t$2) - y2(t)^2*(y1(t)^2 + y2(t)^2)

diff(diff(lambda(t), t), t)+lambda(t)*(y1(t)^2+y2(t)^2)-2*y1(t)*(diff(diff(y1(t), t), t))-y1(t)^2*(y1(t)^2+y2(t)^2)-y1(t)^2/r^2-(diff(y1(t), t))^2-(1/2)*(2*y1(t)*(diff(y1(t), t))+2*y2(t)*(diff(y2(t), t)))^2/(y1(t)^2+y2(t)^2)-2*(y1(t)^2+y2(t)^2)^(1/2)*(-(1/4)*(2*y1(t)*(diff(y1(t), t))+2*y2(t)*(diff(y2(t), t)))^2/(y1(t)^2+y2(t)^2)^(3/2)+(1/2)*(2*(diff(y1(t), t))^2+2*y1(t)*(diff(diff(y1(t), t), t))+2*(diff(y2(t), t))^2+2*y2(t)*(diff(diff(y2(t), t), t)))/(y1(t)^2+y2(t)^2)^(1/2))-(diff(y2(t), t))^2-2*y2(t)*(diff(diff(y2(t), t), t))-y2(t)^2*(y1(t)^2+y2(t)^2)

(2)

ode3 := 2*diff((lambda)(t),t)*y2(t) + lambda(t)*diff((y2)(t),t) - y1(t)*y2(t)*diff((y1)(t),t) - 4*y2(t)*sqrt(y1(t)^2 + y2(t)^2)*diff((sqrt(y1(t)^2 + y2(t)^2)),t) - y2(t)^2*diff((y2)(t),t) - (y1(t)^2 + y2(t)^2)*diff((y2)(t),t) - diff((y2)(t),t$3) ;

2*(diff(lambda(t), t))*y2(t)+lambda(t)*(diff(y2(t), t))-y1(t)*y2(t)*(diff(y1(t), t))-2*y2(t)*(2*y1(t)*(diff(y1(t), t))+2*y2(t)*(diff(y2(t), t)))-y2(t)^2*(diff(y2(t), t))-(y1(t)^2+y2(t)^2)*(diff(y2(t), t))-(diff(diff(diff(y2(t), t), t), t))

(3)

ode4 := lambda(t)*y1(t)/r + mu(t)*r - diff((y1)(t),t$2)/r -1/r*y1(t)*(y1(t)^2 + y2(t)^2) - y1(t)/r^3-2/r*diff(y1(t),t$2)

lambda(t)*y1(t)/r+mu(t)*r-3*(diff(diff(y1(t), t), t))/r-y1(t)*(y1(t)^2+y2(t)^2)/r-y1(t)/r^3

(4)

sys := [ode1, ode2, ode3, ode4]:

dsolve(sys,[y1(t),y2(t),lambda(t),mu(t)],'implicit')

``

``


 

Download 1.1.mw

There are 10 questions. each question has one negetive point and three positive points. what is the number of students so that there will not be any repeatitive grades so all the students have distinct grades. Thanks in advance

1 2 3 4 5 6 7 Last Page 1 of 19