minhthien2016

320 Reputation

6 Badges

6 years, 326 days

MaplePrimes Activity


These are questions asked by minhthien2016

I am trying to find remainder of (2 + sqrt(3))^15 + (2 - sqrt(3))^15 with 2017. I tried
irem((2 + sqrt(3))^15 + (2 - sqrt(3))^15, 2017);

I do not get the result. How can I get the result?

I use like this 
a := expand((2 + sqrt(3))^15 + (2 - sqrt(3))^15);
irem(a, 2017);

get the result.

How do I draw this polyhedron knowing all vertices?
https://artofproblemsolving.com/wiki/index.php/2022_AMC_10A_Problems/Problem_21?fbclid=IwAR2bdHwJEpjarZEwope1hYOcnnXqnvzae38Y8ZrfWKCKQunfAuT9s30q32o

[[-1.5, -0.5, 0.], [-1.5, 0.5, 0.], [-1., -1., -0.707107], [-1., 1., -0.707107], [-0.5, -1.5, 0.], [-0.5, -0.5, -1.41421], [-0.5, 0.5, -1.41421], [-0.5, 1.5, 0.], [0.5, -1.5, 0.], [0.5, -0.5, -1.41421], [0.5, 0.5, -1.41421], [0.5, 1.5, 0.], [1., -1., -0.707107], [1., 1., -0.707107], [1.5, -0.5, 0.], [1.5, 0.5, 0.]]

 

The date, month, year  22/02/2022 is said a beautiful numbers. Because, the number 2202 symmetry to the number 2022. How can I find another beautiful numbers like that ?

With two vectors a and b, we know that
Norm(CrossProduct(a, b)) = Norm(a)* Norm(b) * sin(a,b).
I tried with a := <1, 2, -2>; b := <2, 10, 11>; 

Note that a perpendicular to b and 

Norm(CrossProduct(a, b)) = Norm(a)* Norm(b)

I tried

restart;
with(VectorCalculus);
SetCoordinates(cartesian[x, y, z]);
a := <1, 2, -2>;
b := <2, 10, 11>;
Norm(a);
Norm(b);
v := CrossProduct(a, b);
Norm(v);


Are there two vectors a and b with integer coordinates and  not perpendicular,  so that Norm(a), Norm(b), Norm(CrossProduct(a, b)) are interger numbers satisfying
Norm(CrossProduct(a, b)) = Norm(a)* Norm(b) * sin(a,b).

The system of equations x*y*z + y*z + y = 21, x*y*z + x*z + z = 30, x*y*z + x*y + x = 12

has three solutions, one of them is not an integer solution.

solve({x*y*z + y*z + y = 21, x*y*z + x*z + z = 30, x*y*z + x*y + x = 12}, {x, y, z})

How can I find three numbers a, b, c so that the system of equations

x*y*z + y*z + y = a, x*y*z + x*z + z = b, x*y*z + x*y + x = c

has three  solutions (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3), where x1, y1, z1, x2, y2, z2, x3, y3, z3 are nine integer numbers.

2 3 4 5 6 7 8 Last Page 4 of 15