nmani

136 Reputation

7 Badges

10 years, 164 days

MaplePrimes Activity


These are replies submitted by nmani

Hi,

I have to ignore this eqn if order of x(t) is not zero ?

I am doing simplification so I have a procedure if we have x(t)+diff(z(t),t)=0 we find x(t)=-diff(z(t),t) (solve for x(t)) and substitute in other part of the system instead of x(t), -diff(z(t),t) but when we have x(t)+diff(x(t),t) +3diff(x(t),t,t)=0 it is unable to solve the equation for x(t) so I have to tell my procedure to ignore this eqn and leave it the like this.

Regards,

 

 

 

Hi,

I have to ignore this eqn if order of x(t) is not zero ?

I am doing simplification so I have a procedure if we have x(t)+diff(z(t),t)=0 we find x(t)=-diff(z(t),t) (solve for x(t)) and substitute in other part of the system instead of x(t), -diff(z(t),t) but when we have x(t)+diff(x(t),t) +3diff(x(t),t,t)=0 it is unable to solve the equation for x(t) so I have to tell my procedure to ignore this eqn and leave it the like this.

Regards,

 

 

 

Hello thanks for information.

So There is no way we can solve this problem?

Thanks,

 

Hello thanks for information.

So There is no way we can solve this problem?

Thanks,

 

Hello,

Thanks for your reply.

I changed initial conditions to be consistent but still same error.

How can I solve this system?

Sorry and thanks.

Bye.

 

Hello,

Thanks for your reply.

I changed initial conditions to be consistent but still same error.

How can I solve this system?

Sorry and thanks.

Bye.

 

Thanks a lot.

Thanks a lot.

Hello,

Hope you are doing well.

Thanks for your reply.

I tried to use Bases for this system to make Groebner basis by tdeg but that one also did not work for me.

I mean Basis(system,tdeg(var)).

Could you please show me an example for a graded reverse lex Groebner basis using FGb.

Also could you please let me know what is the Singular computer algebra system?

Thanks a million.

I really appriciate that.

Bye,

Hello,

Hope you are doing well.

Thanks for your reply.

I tried to use Bases for this system to make Groebner basis by tdeg but that one also did not work for me.

I mean Basis(system,tdeg(var)).

Could you please show me an example for a graded reverse lex Groebner basis using FGb.

Also could you please let me know what is the Singular computer algebra system?

Thanks a million.

I really appriciate that.

Bye,

3*n2*n12*n8*n9+3*n2*n12*n7*n10+3*n1*n11*n8*n9+3*n1*n11*n7*n10+3*n2*n8*n9+3*n2*n7*n10+3*n9-3*n1*n12*n8*n10+3*n1*n12*n7*n9+3*n2*n11*n8*n10-3*n2*n11*n7*n9-3*n1*n8*n10+3*n1*n7*n9,
-3-3*n2*n12*n8*n10+3*n2*n12*n7*n9-3*n1*n11*n8*n10+3*n1*n11*n7*n9-3*n2*n8*n10+3*n2*n7*n9-3*n10-3*n1*n12*n7*n10-3*n1*n12*n8*n9+3*n2*n11*n7*n10+3*n2*n11*n8*n9-3*n1*n7*n10-3*n1*n8*n9,
-3*n2*n4*n8*n10*n5+3*n2*n4*n7*n10*n6+3*n2*n3*n7*n10*n5+3*n2*n3*n8*n10*n6+3*n1*n4*n13*n7*n9*n5+3*n1*n4*n13*n8*n9*n6+3*n1*n4*n13*n7*n10*n6-3*n1*n4*n13*n8*n10*n5-3*n1*n4*n14*n7*n10*n5-3*n1*n4*n14*n8*n10*n6+3*n2*n4*n13*n8*n9*n5-3*n2*n4*n13*n7*n9*n6-3*n2*n3*n13*n7*n9*n5-3*n2*n3*n13*n8*n9*n6+3*n2*n4*n13*n7*n10*n5+3*n2*n4*n13*n8*n10*n6-3*n2*n3*n13*n7*n10*n6+3*n2*n3*n13*n8*n10*n5+3*n2*n4*n14*n7*n10*n6-3*n2*n4*n14*n8*n10*n5+3*n2*n3*n14*n7*n10*n5+3*n2*n3*n14*n8*n10*n6-3*n5+3*n2*n4*n7*n9*n5+3*n2*n4*n8*n9*n6+3*n2*n3*n8*n9*n5-3*n2*n3*n7*n9*n6-3*n1*n4*n7*n10*n5-3*n1*n4*n8*n10*n6-3*n1*n3*n8*n10*n5+3*n1*n3*n7*n10*n6-3*n1*n4*n8*n9*n5+3*n1*n4*n7*n9*n6+3*n1*n3*n7*n9*n5+3*n1*n3*n8*n9*n6+3*n2*n4*n14*n7*n9*n5+3*n2*n4*n14*n8*n9*n6+3*n2*n3*n14*n8*n9*n5-3*n2*n3*n14*n7*n9*n6-3*n10*n5+3*n2*n7*n10*n6-3*n2*n8*n10*n5+3*n1*n7*n9*n6-3*n1*n8*n9*n5-3*n1*n8*n10*n6-3*n1*n7*n10*n5+3*n1*n3*n14*n7*n10*n6-3*n1*n3*n14*n8*n10*n5+3*n1*n3*n13*n8*n10*n6+3*n1*n3*n13*n7*n10*n5+3*n1*n4*n14*n7*n9*n6-3*n1*n4*n14*n8*n9*n5+3*n1*n3*n14*n7*n9*n5+3*n1*n3*n14*n8*n9*n6+3*n1*n3*n13*n8*n9*n5-3*n1*n3*n13*n7*n9*n6+3*n2*n8*n9*n6+3*n2*n7*n9*n5+3*n9*n6,
-3*n2*n4*n7*n10*n5-3*n2*n4*n8*n10*n6-3*n2*n3*n8*n10*n5+3*n2*n3*n7*n10*n6-3*n2*n3*n14*n8*n10*n5+3*n2*n3*n14*n7*n10*n6-3*n2*n4*n14*n7*n10*n5-3*n2*n4*n14*n8*n10*n6+3*n2*n3*n13*n7*n10*n5+3*n2*n3*n13*n8*n10*n6-3*n2*n4*n13*n8*n10*n5+3*n2*n4*n13*n7*n10*n6+3*n2*n3*n14*n7*n9*n5+3*n2*n3*n14*n8*n9*n6-3*n2*n4*n14*n8*n9*n5+3*n2*n4*n14*n7*n9*n6-3*n6+3*n2*n3*n13*n8*n9*n5-3*n2*n3*n13*n7*n9*n6+3*n2*n4*n13*n7*n9*n5+3*n2*n4*n13*n8*n9*n6-3*n2*n4*n8*n9*n5+3*n2*n4*n7*n9*n6+3*n2*n3*n7*n9*n5+3*n2*n3*n8*n9*n6+3*n1*n4*n8*n10*n5-3*n1*n4*n7*n10*n6-3*n1*n3*n7*n10*n5-3*n1*n3*n8*n10*n6-3*n1*n4*n7*n9*n5-3*n1*n4*n8*n9*n6-3*n1*n3*n8*n9*n5+3*n1*n3*n7*n9*n6-3*n1*n3*n14*n7*n10*n5-3*n1*n3*n14*n8*n10*n6+3*n1*n4*n14*n8*n10*n5-3*n1*n4*n14*n7*n10*n6-3*n1*n3*n13*n8*n10*n5+3*n1*n3*n13*n7*n10*n6-3*n1*n4*n13*n7*n10*n5-3*n1*n4*n13*n8*n10*n6-3*n1*n3*n14*n8*n9*n5+3*n1*n3*n14*n7*n9*n6-3*n1*n4*n14*n7*n9*n5-3*n1*n4*n14*n8*n9*n6+3*n1*n3*n13*n7*n9*n5+3*n1*n3*n13*n8*n9*n6-3*n1*n4*n13*n8*n9*n5+3*n1*n4*n13*n7*n9*n6-3*n10*n6-3*n2*n8*n10*n6-3*n2*n7*n10*n5-3*n1*n8*n9*n6-3*n1*n7*n9*n5-3*n1*n7*n10*n6+3*n1*n8*n10*n5-3+3*n2*n7*n9*n6-3*n2*n8*n9*n5-3*n9*n5,
n1^2+n2^2-1,
n3^2+n4^2-1,
n5^2+n6^2-1,
n7^2+n8^2-1,
n9^2+n10^2-1,
n11^2+n12^2-1,
n13^2+n14^2-1

3*n2*n12*n8*n9+3*n2*n12*n7*n10+3*n1*n11*n8*n9+3*n1*n11*n7*n10+3*n2*n8*n9+3*n2*n7*n10+3*n9-3*n1*n12*n8*n10+3*n1*n12*n7*n9+3*n2*n11*n8*n10-3*n2*n11*n7*n9-3*n1*n8*n10+3*n1*n7*n9,
-3-3*n2*n12*n8*n10+3*n2*n12*n7*n9-3*n1*n11*n8*n10+3*n1*n11*n7*n9-3*n2*n8*n10+3*n2*n7*n9-3*n10-3*n1*n12*n7*n10-3*n1*n12*n8*n9+3*n2*n11*n7*n10+3*n2*n11*n8*n9-3*n1*n7*n10-3*n1*n8*n9,
-3*n2*n4*n8*n10*n5+3*n2*n4*n7*n10*n6+3*n2*n3*n7*n10*n5+3*n2*n3*n8*n10*n6+3*n1*n4*n13*n7*n9*n5+3*n1*n4*n13*n8*n9*n6+3*n1*n4*n13*n7*n10*n6-3*n1*n4*n13*n8*n10*n5-3*n1*n4*n14*n7*n10*n5-3*n1*n4*n14*n8*n10*n6+3*n2*n4*n13*n8*n9*n5-3*n2*n4*n13*n7*n9*n6-3*n2*n3*n13*n7*n9*n5-3*n2*n3*n13*n8*n9*n6+3*n2*n4*n13*n7*n10*n5+3*n2*n4*n13*n8*n10*n6-3*n2*n3*n13*n7*n10*n6+3*n2*n3*n13*n8*n10*n5+3*n2*n4*n14*n7*n10*n6-3*n2*n4*n14*n8*n10*n5+3*n2*n3*n14*n7*n10*n5+3*n2*n3*n14*n8*n10*n6-3*n5+3*n2*n4*n7*n9*n5+3*n2*n4*n8*n9*n6+3*n2*n3*n8*n9*n5-3*n2*n3*n7*n9*n6-3*n1*n4*n7*n10*n5-3*n1*n4*n8*n10*n6-3*n1*n3*n8*n10*n5+3*n1*n3*n7*n10*n6-3*n1*n4*n8*n9*n5+3*n1*n4*n7*n9*n6+3*n1*n3*n7*n9*n5+3*n1*n3*n8*n9*n6+3*n2*n4*n14*n7*n9*n5+3*n2*n4*n14*n8*n9*n6+3*n2*n3*n14*n8*n9*n5-3*n2*n3*n14*n7*n9*n6-3*n10*n5+3*n2*n7*n10*n6-3*n2*n8*n10*n5+3*n1*n7*n9*n6-3*n1*n8*n9*n5-3*n1*n8*n10*n6-3*n1*n7*n10*n5+3*n1*n3*n14*n7*n10*n6-3*n1*n3*n14*n8*n10*n5+3*n1*n3*n13*n8*n10*n6+3*n1*n3*n13*n7*n10*n5+3*n1*n4*n14*n7*n9*n6-3*n1*n4*n14*n8*n9*n5+3*n1*n3*n14*n7*n9*n5+3*n1*n3*n14*n8*n9*n6+3*n1*n3*n13*n8*n9*n5-3*n1*n3*n13*n7*n9*n6+3*n2*n8*n9*n6+3*n2*n7*n9*n5+3*n9*n6,
-3*n2*n4*n7*n10*n5-3*n2*n4*n8*n10*n6-3*n2*n3*n8*n10*n5+3*n2*n3*n7*n10*n6-3*n2*n3*n14*n8*n10*n5+3*n2*n3*n14*n7*n10*n6-3*n2*n4*n14*n7*n10*n5-3*n2*n4*n14*n8*n10*n6+3*n2*n3*n13*n7*n10*n5+3*n2*n3*n13*n8*n10*n6-3*n2*n4*n13*n8*n10*n5+3*n2*n4*n13*n7*n10*n6+3*n2*n3*n14*n7*n9*n5+3*n2*n3*n14*n8*n9*n6-3*n2*n4*n14*n8*n9*n5+3*n2*n4*n14*n7*n9*n6-3*n6+3*n2*n3*n13*n8*n9*n5-3*n2*n3*n13*n7*n9*n6+3*n2*n4*n13*n7*n9*n5+3*n2*n4*n13*n8*n9*n6-3*n2*n4*n8*n9*n5+3*n2*n4*n7*n9*n6+3*n2*n3*n7*n9*n5+3*n2*n3*n8*n9*n6+3*n1*n4*n8*n10*n5-3*n1*n4*n7*n10*n6-3*n1*n3*n7*n10*n5-3*n1*n3*n8*n10*n6-3*n1*n4*n7*n9*n5-3*n1*n4*n8*n9*n6-3*n1*n3*n8*n9*n5+3*n1*n3*n7*n9*n6-3*n1*n3*n14*n7*n10*n5-3*n1*n3*n14*n8*n10*n6+3*n1*n4*n14*n8*n10*n5-3*n1*n4*n14*n7*n10*n6-3*n1*n3*n13*n8*n10*n5+3*n1*n3*n13*n7*n10*n6-3*n1*n4*n13*n7*n10*n5-3*n1*n4*n13*n8*n10*n6-3*n1*n3*n14*n8*n9*n5+3*n1*n3*n14*n7*n9*n6-3*n1*n4*n14*n7*n9*n5-3*n1*n4*n14*n8*n9*n6+3*n1*n3*n13*n7*n9*n5+3*n1*n3*n13*n8*n9*n6-3*n1*n4*n13*n8*n9*n5+3*n1*n4*n13*n7*n9*n6-3*n10*n6-3*n2*n8*n10*n6-3*n2*n7*n10*n5-3*n1*n8*n9*n6-3*n1*n7*n9*n5-3*n1*n7*n10*n6+3*n1*n8*n10*n5-3+3*n2*n7*n9*n6-3*n2*n8*n9*n5-3*n9*n5,
n1^2+n2^2-1,
n3^2+n4^2-1,
n5^2+n6^2-1,
n7^2+n8^2-1,
n9^2+n10^2-1,
n11^2+n12^2-1,
n13^2+n14^2-1

Dear Robert,

Hello again.

sorry I am bothering.

 

I have another question:

 

I have a 5 by 5 system with big big big equations and a lot of sin and cos like that RedSys in last question which I could not solve in my computer due to many sin or cos or due to being big big, so I used dsolve in network, after two hours answer was shown, my supervisor beilves, it should not be the case, so he wanted me to use implicit in dsolve, I used but again kernel was lost in my machin, I wanted to use implicit for this 2 by 2 system that I send you in last email to see what is the problem, I mean RedSys but answer is wired

I sent my file in this message.

 

Please if you do not mind take a look at I do not know why nothing is shown as a answer.

I am so sorry I am bothering all the time.

 

Bye

 

View 11301_test.mw on MapleNet or Download 11301_test.mw
View file details


 

Dear Robert,

Hello again.

sorry I am bothering.

 

I have another question:

 

I have a 5 by 5 system with big big big equations and a lot of sin and cos like that RedSys in last question which I could not solve in my computer due to many sin or cos or due to being big big, so I used dsolve in network, after two hours answer was shown, my supervisor beilves, it should not be the case, so he wanted me to use implicit in dsolve, I used but again kernel was lost in my machin, I wanted to use implicit for this 2 by 2 system that I send you in last email to see what is the problem, I mean RedSys but answer is wired

I sent my file in this message.

 

Please if you do not mind take a look at I do not know why nothing is shown as a answer.

I am so sorry I am bothering all the time.

 

Bye

 

View 11301_test.mw on MapleNet or Download 11301_test.mw
View file details


 

Hello

I am wroking in mws but I saved to mpl to send you, does it have a problem

 

any way thanksss

1 2 Page 1 of 2