sursumCorda

1244 Reputation

15 Badges

2 years, 243 days

MaplePrimes Activity


These are questions asked by sursumCorda

Here are three algebraic numbers: (In fact, they are solutions to some equation. See the attachment below.)

bSol := {RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) - 1133, index = real[2]), RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) - 1133, index = real[2]), RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) - 1133, index = real[2])}:

One may check that 11_X9-47_X8+96_X7-376_X6-370_X5-142_X4+280_X3+64_X2-17_X-11 is an “annihilating” polynomial of each of them (using another computer algebra system); accordingly, the degree of the minimal polynomial cannot be greater than 9. However, Maple's output indicates that the minimal polynomial is of degree 36

restart;

alias(`~`[`=`](alpha__ || (1 .. 3), ` $`, RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, .2246 .. .2266), RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, 1.671 .. 1.68), RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, 2.648 .. 2.657)))

({PDETools:-Solve})({`~`[`>=`](a, b, ` $`, 0), a^5*b+4*a^4*b^2+4*a^3*b^3-7*a^4*b-6*a^2*b^3-7*a*b^4+b^5-6*a^3*b+12*a^2*b^2+4*b^4+4*a^3-6*a*b^2+4*b^3+4*a^2-7*a*b+a = 0, a <> b})
bSol := `~`[subs](%, b)

evalf[2*Digits](`~`[eval](11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11, `~`[`=`](_X, bSol)))

{RootOf(1216*_Z^4+(264*alpha__1^8+408*alpha__1^7-1580*alpha__1^6-6832*alpha__1^5+3508*alpha__1^4+9944*alpha__1^3+9948*alpha__1^2-10752*alpha__1+5204)*_Z^3+(891*alpha__1^8+1652*alpha__1^7-4748*alpha__1^6-24076*alpha__1^5+5354*alpha__1^4+35356*alpha__1^3+29668*alpha__1^2-196*alpha__1+3971)*_Z^2+(506*alpha__1^8+980*alpha__1^7-2264*alpha__1^6-12420*alpha__1^5+3676*alpha__1^4+11596*alpha__1^3+33800*alpha__1^2-7772*alpha__1+1210)*_Z-473*alpha__1^8-720*alpha__1^7+2560*alpha__1^6+10960*alpha__1^5-8034*alpha__1^4-13840*alpha__1^3-9304*alpha__1^2+1104*alpha__1-1133, index = real[2]), RootOf(1216*_Z^4+(264*alpha__2^8+408*alpha__2^7-1580*alpha__2^6-6832*alpha__2^5+3508*alpha__2^4+9944*alpha__2^3+9948*alpha__2^2-10752*alpha__2+5204)*_Z^3+(891*alpha__2^8+1652*alpha__2^7-4748*alpha__2^6-24076*alpha__2^5+5354*alpha__2^4+35356*alpha__2^3+29668*alpha__2^2-196*alpha__2+3971)*_Z^2+(506*alpha__2^8+980*alpha__2^7-2264*alpha__2^6-12420*alpha__2^5+3676*alpha__2^4+11596*alpha__2^3+33800*alpha__2^2-7772*alpha__2+1210)*_Z-473*alpha__2^8-720*alpha__2^7+2560*alpha__2^6+10960*alpha__2^5-8034*alpha__2^4-13840*alpha__2^3-9304*alpha__2^2+1104*alpha__2-1133, index = real[2]), RootOf(1216*_Z^4+(264*alpha__3^8+408*alpha__3^7-1580*alpha__3^6-6832*alpha__3^5+3508*alpha__3^4+9944*alpha__3^3+9948*alpha__3^2-10752*alpha__3+5204)*_Z^3+(891*alpha__3^8+1652*alpha__3^7-4748*alpha__3^6-24076*alpha__3^5+5354*alpha__3^4+35356*alpha__3^3+29668*alpha__3^2-196*alpha__3+3971)*_Z^2+(506*alpha__3^8+980*alpha__3^7-2264*alpha__3^6-12420*alpha__3^5+3676*alpha__3^4+11596*alpha__3^3+33800*alpha__3^2-7772*alpha__3+1210)*_Z-473*alpha__3^8-720*alpha__3^7+2560*alpha__3^6+10960*alpha__3^5-8034*alpha__3^4-13840*alpha__3^3-9304*alpha__3^2+1104*alpha__3-1133, index = real[2])}

 

{-0.7765721e-11, -0.40e-16, -0.2e-17}

(1)

`~`[`@`(evala, Minpoly)](bSol, _X)

{-17799961-(10941904462/121)*_X+(61823634144236824/14641)*_X^9-(31748793508955524/14641)*_X^8-(101389427707536/14641)*_X^7+(2187899683524768/14641)*_X^6+(660533278629392/14641)*_X^5-(35195970681077/1331)*_X^4+(4540912173250/1331)*_X^3-(226104907168/1331)*_X^2+_X^36+(562/11)*_X^35+(1306112/1331)*_X^34-(18882494/14641)*_X^33-(1885893201/14641)*_X^32-(8021957456/14641)*_X^31+(128807680096/14641)*_X^30+(601684442192/14641)*_X^29+(136952065956/14641)*_X^28-(7313279407608/14641)*_X^27-(20755313257248/14641)*_X^26-(72279502775080/14641)*_X^25-(235147325265588/14641)*_X^24+(407012808852624/14641)*_X^23-(2003920103008/1331)*_X^22-(2647129453154576/14641)*_X^21-(5329535956015778/14641)*_X^20-(11189597881735324/14641)*_X^19+(18014890583299168/14641)*_X^18-(25692630236542548/14641)*_X^17+(57603516516708946/14641)*_X^16-(875402744452912/121)*_X^15+(36990665431348512/14641)*_X^14+(67887070781490608/14641)*_X^13+(643327218250876/1331)*_X^12-(81888059180050616/14641)*_X^11+(306280599794336/14641)*_X^10}

(2)

`~`[PolynomialTools[MinimalPolynomial]](bSol, _X)

{14641*_X^36+748022*_X^35+14367232*_X^34-18882494*_X^33-1885893201*_X^32-8021957456*_X^31+128807680096*_X^30+601684442192*_X^29+136952065956*_X^28-7313279407608*_X^27-20755313257248*_X^26-72279502775080*_X^25-235147325265588*_X^24+407012808852624*_X^23-22043121133088*_X^22-2647129453154576*_X^21-5329535956015778*_X^20-11189597881735324*_X^19+18014890583299168*_X^18-25692630236542548*_X^17+57603516516708946*_X^16-105923732078802352*_X^15+36990665431348512*_X^14+67887070781490608*_X^13+7076599400759636*_X^12-81888059180050616*_X^11+306280599794336*_X^10+61823634144236824*_X^9-31748793508955524*_X^8-101389427707536*_X^7+2187899683524768*_X^6+660533278629392*_X^5-387155677491847*_X^4+49950033905750*_X^3-2487153978848*_X^2-1323970439902*_X-260609229001}

(3)

factor({{-260609229001-1323970439902*_X+407012808852624*_X^23-22043121133088*_X^22-2647129453154576*_X^21-5329535956015778*_X^20-11189597881735324*_X^19+18014890583299168*_X^18-25692630236542548*_X^17+57603516516708946*_X^16-105923732078802352*_X^15+36990665431348512*_X^14+67887070781490608*_X^13+7076599400759636*_X^12-81888059180050616*_X^11+306280599794336*_X^10+61823634144236824*_X^9-31748793508955524*_X^8-101389427707536*_X^7+2187899683524768*_X^6+660533278629392*_X^5-387155677491847*_X^4+49950033905750*_X^3-2487153978848*_X^2+14641*_X^36+748022*_X^35+14367232*_X^34-18882494*_X^33-1885893201*_X^32-8021957456*_X^31+128807680096*_X^30+601684442192*_X^29+136952065956*_X^28-7313279407608*_X^27-20755313257248*_X^26-72279502775080*_X^25-235147325265588*_X^24}[], {-17799961-(10941904462/121)*_X+(407012808852624/14641)*_X^23-(2003920103008/1331)*_X^22-(2647129453154576/14641)*_X^21-(5329535956015778/14641)*_X^20-(11189597881735324/14641)*_X^19+(18014890583299168/14641)*_X^18-(25692630236542548/14641)*_X^17+(57603516516708946/14641)*_X^16-(875402744452912/121)*_X^15+(36990665431348512/14641)*_X^14+(67887070781490608/14641)*_X^13+(643327218250876/1331)*_X^12-(81888059180050616/14641)*_X^11+(306280599794336/14641)*_X^10+(61823634144236824/14641)*_X^9-(31748793508955524/14641)*_X^8-(101389427707536/14641)*_X^7+(2187899683524768/14641)*_X^6+(660533278629392/14641)*_X^5-(35195970681077/1331)*_X^4+(4540912173250/1331)*_X^3-(226104907168/1331)*_X^2+_X^36+(562/11)*_X^35+(1306112/1331)*_X^34-(18882494/14641)*_X^33-(1885893201/14641)*_X^32-(8021957456/14641)*_X^31+(128807680096/14641)*_X^30+(601684442192/14641)*_X^29+(136952065956/14641)*_X^28-(7313279407608/14641)*_X^27-(20755313257248/14641)*_X^26-(72279502775080/14641)*_X^25-(235147325265588/14641)*_X^24}[]})

{(11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11)*(83746429305*_X-163433814*_X^23-1409885474*_X^22+7323055726*_X^21+92878340298*_X^20+291711433585*_X^19-28358008525*_X^18-1146850616945*_X^17+2003142623069*_X^16+7054039060380*_X^15+10860482240404*_X^14+4410674835220*_X^13-23715924119108*_X^12+39935154074341*_X^11-76564178781009*_X^10+246946329497683*_X^9-303627746551159*_X^8+41661161235738*_X^7+181533634595246*_X^6-146573328877410*_X^5+44279227597786*_X^4-3813039868649*_X^3+234521505317*_X^2+1331*_X^27+73689*_X^26+1609349*_X^25+4562111*_X^24+23691748091), (1/14641)*(11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11)*(83746429305*_X-163433814*_X^23-1409885474*_X^22+7323055726*_X^21+92878340298*_X^20+291711433585*_X^19-28358008525*_X^18-1146850616945*_X^17+2003142623069*_X^16+7054039060380*_X^15+10860482240404*_X^14+4410674835220*_X^13-23715924119108*_X^12+39935154074341*_X^11-76564178781009*_X^10+246946329497683*_X^9-303627746551159*_X^8+41661161235738*_X^7+181533634595246*_X^6-146573328877410*_X^5+44279227597786*_X^4-3813039868649*_X^3+234521505317*_X^2+1331*_X^27+73689*_X^26+1609349*_X^25+4562111*_X^24+23691748091)}

(4)

``


 

Download minpoly.mw

Isn't the results incorrect? 

Let us begin with the official descriptions of loops. The Maple® documentation claims that: 

Note that the examples above don't necessarily illustrate the best way to perform these operations. Often a functional form like seqmapadd, or mul is far more efficient.

Mma's tech tutorial also claims that: 

If you have a big program full of IfDoReturn, etc., you're probably not doing things right
Often, however, you can make more elegant and efficient programs using the functional programming constructs ….

Also, MatLab's Techniques to Improve Performance and Measure and Improve GPU Performance claims that: 

You can achieve better performance by rewriting loops to make use of higher-dimensional operations. The performance of a wide variety of element-wise functions can be improved … instead of looping over the matrices.

Well, I'm confused. Why did the official help page say like this? Actually, I find that lots of users in this forum still (and usually) use traditional for-loops instead of something which fits in with the alleged functional programming ideas. Did I misconstrue those statements? 
(For instance, as for the functional operations, it's unfortunate that Maple's built-in map cannot operate on arbitrary expression trees of any depth; so I have to use the loops to apply some procedure indirectly, which is not so convenient. In my opinion, owing to such limitation, people have to, and then gradually tend to, use the loops.) 

According to this help page

the transitive reduction of graph G, is the graph with the fewest edges that still shares the same reachability as G (but might contain new edges not present in G). 

However, in Maple 2023, things become strange; different branches return distinct numbers of edges: 
(33 arcs or 40 arcs?)

restart;

with(GraphTheory):

showstat(TransitiveReduction, 4)


GraphTheory:-TransitiveReduction := proc(G::GRAPHLN, $)
local D, V, T, i, j, k, A, M, n, flags, B;
       ...
   4   if _EnvDisableExt <> true then
           ...
       elif D <> (':-directed') then
           ...
       else
           ...
       end if;
       ...
end proc
 

 

G__0 := Digraph({[2, 8], [3, 1], [4, 9], [5, 10], [6, 19], [7, 12], [8, 13], [9, 3], [10, 4], [10, 14], [11, 5], [11, 15], [12, 6], [12, 16], [13, 7], [13, 17], [14, 9], [15, 10], [15, 18], [16, 19], [17, 12], [17, 20], [18, 14], [19, 11], [19, 21], [20, 22], [21, 18], [22, 16], [22, 23], [23, 19]})

G__0 := `Graph 1: a directed graph with 23 vertices and 30 arc(s)`

(1)

G__1 := TransitiveReduction(G__0)

G__1 := `Graph 2: a directed graph with 23 vertices and 33 arc(s)`

(2)

_EnvDisableExt := trueG__2 := TransitiveReduction(G__0)

G__2 := `Graph 3: a directed graph with 23 vertices and 40 arc(s)`

(3)

IsIsomorphic(G__1, G__2)

false

(4)

 


 

Download TransReduction.mw

Any bugs? 

G__0 := GraphTheory:-Digraph({[3, 1], [9, 3], [4, 9], [14, 9], [10, 4], [5, 10], [15, 10], [11, 5], [19, 11], [12, 6], [7, 12], [17, 12], [13, 7], [8, 13], [2, 8], [10, 14], [18, 14], [11, 15], [6, 19], [16, 19], [23, 19], [13, 17], [15, 18], [21, 18], [12, 16], [22, 16], [22, 23], [20, 22], [19, 21], [17, 20]}):

For example, I'd like to do something like this (and then plot the graph): 

 # display LaTeX markup
label__1 := '"\[\cfrac{\biguplus_\LaTeX}{{\color{red}\leadsto}^\unicode{2254}}\]"':
 # display non-executable notation
label__2 := '(Product(Int(i, j), Sum(k, l)) %assuming convert(log2(1 - 'x'), confrac, subdiagonal))':
 # display graphical object
label__3 := 'plots:-display(plottools:-stellate(plottools:-icosahedron()))':
 # note that the desired one is  instead of 
GraphTheory:-RelabelVertices(`some graph with 3 nodes`, [label__1, label__2, label__3]):

But unfortunately, the second argument of GraphTheory:-RelabelVertices must be of type list({indexed, integer, string, symbol}), and the GraphTheory:-SetVertexAttribute command doesn't work here. Is it possible to do so in Maple® (rather than in other mathematical softwares)?

 

The result of is said to be the Catalan constant, but unfortunately, Maple® only returns a lengthy output, so I have to apply the simplify command to get a shorter (and equivalent) form of it. However, I find that these do not work here: 

restart;

expr__1 := expand(value(student[Doubleint](sec(x+y)*sec(x-y)/(sec(x)*sec(y)), x = 0 .. (1/4)*Pi, y = 0 .. (1/4)*Pi)))

MmaTranslator:-Mma:-Chop(evalf(expr__1-Catalan))

((1/2)*I)*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+((1/2)*I)*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2+Catalan

 

0

(1)

simplify(expr__1, size = false)-Catalan; Physics:-Simplify(expr__1)-Catalan; simplify(expr__1-Catalan, size = false); Physics:-Simplify(expr__1-Catalan); verify(expr__1, Catalan, equal); is(expr__1 = Catalan); verify(expr__1-Catalan, 0, equal); is(expr__1-Catalan, 0)

((1/2)*I)*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+((1/2)*I)*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2

 

((1/2)*I)*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+((1/2)*I)*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2

 

((1/8)*I)*(-Pi^2+4*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+4*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-4*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-4*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2)))

 

((1/8)*I)*(-Pi^2+4*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+4*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-4*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-4*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2)))

 

FAIL

 

FAIL

 

FAIL

 

FAIL

(2)

expr__2 := expand(convert(expr__1, polylog, simplifier = NONE))

((1/2)*I)*polylog(2, (1/2)*2^(1/2)-((1/2)*I)*2^(1/2))+((1/2)*I)*polylog(2, (1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/2)*I)*polylog(2, -((1/2)*I)*2^(1/2)-(1/2)*2^(1/2))-((1/2)*I)*polylog(2, -(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2+Catalan

(3)

simplify(expr__2, size = false)-Catalan; Physics:-Simplify(expr__2)-Catalan; simplify(expr__2-Catalan, size = false); Physics:-Simplify(expr__2-Catalan); verify(expr__2, Catalan, equal); is(expr__2 = Catalan); verify(expr__2-Catalan, 0, equal); is(expr__2-Catalan, 0)

0

 

((1/2)*I)*polylog(2, (1/2-(1/2)*I)*2^(1/2))+((1/2)*I)*polylog(2, (1/2+(1/2)*I)*2^(1/2))-((1/2)*I)*polylog(2, (-1/2-(1/2)*I)*2^(1/2))-((1/2)*I)*polylog(2, (-1/2+(1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2

 

0

 

-((1/8)*I)*(Pi^2+4*polylog(2, (-1/2+(1/2)*I)*2^(1/2))+4*polylog(2, (-1/2-(1/2)*I)*2^(1/2))-4*polylog(2, (1/2+(1/2)*I)*2^(1/2))-4*polylog(2, (1/2-(1/2)*I)*2^(1/2)))

 

true

 

true

 

true

 

true

(4)

NULL

Download Unable_to_simplify_expressions_containing_dilog.mw

(By the way, Mathematica's Integrate cannot compute this double integral explicitly.)

First 15 16 17 18 19 20 21 Page 17 of 23