tomleslie

13876 Reputation

20 Badges

15 years, 163 days

MaplePrimes Activity


These are answers submitted by tomleslie

in

Maple 2021
Maple 2020

No error in Maple 2019, although not the most *useful* solution I've seen - see attached

interface(version);

`Standard Worksheet Interface, Maple 2019.2, Windows 7, November 26 2019 Build ID 1435526`

(1)

restart;

ode := diff(f(Z), Z$2) = 3602879701896397*(3860741894751515/1125899906842624 + (5048392920194975*f(Z)^2)/1073741824 - (2484212754397225*f(Z)^4)/1073741824 - (321579057930643*f(Z)^6)/2147483648 - (4936153155163025*f(Z)^8)/2251799813685248)/(4611686018427387904*f(Z)^3*(4178268760908915/1073741824 + 315761000*f(Z)^2));
dsolve([ode,f(0)=1,D(f)(0)=0])

diff(diff(f(Z), Z), Z) = (3602879701896397/4611686018427387904)*(3860741894751515/1125899906842624+(5048392920194975/1073741824)*f(Z)^2-(2484212754397225/1073741824)*f(Z)^4-(321579057930643/2147483648)*f(Z)^6-(4936153155163025/2251799813685248)*f(Z)^8)/(f(Z)^3*(4178268760908915/1073741824+315761000*f(Z)^2))

 

f(Z) = RootOf(Int(-39789795718837797611508324887012812762406721839096654648217618427674624000*_a/(-4293424321810315476036203820942187351568669035237360804920799774628999191050394938891557865152816435938586667972903717749273080627200000*_a^6-586587461028975388078961177736363966758858596162173298513348983067624557546769568289337878186709313607352737623379327613000207214391066624000*_a^4-1503447567257950812441408481128161915982791022496486651957321878417702409937013896465893362642770425680250526083570076463446186042908099743961985*ln(67809158417612800*_a^2+835653752181783)*_a^2+2988783930423113072233484605531439164063725055235955282131456243304220971191028887275115388197971541922627387369713954099187164135230013440000000*ln(_a)*_a^2+1503447567257950812441408481128161915982791022496486651957321878417702409937013896465893362642770425680250526083570076463446186042908099743961985*_a^2*ln(68644812169794583)+587681707858434719666471948147348221815674065200640142974165093040737001767837919657098302265210397435964786214849690899376956811272781824000*_a^2-1089953405137521272034734207163312869463900369431607100011189173337815221877300972821532520635931012176110004802390382659000323801088000000)^(1/2), _a = _Z .. 1)+Z)

(2)

 

Download odeErr.mw

 

to have picked a "non-robust" method of computing tangent planes.

A couple of "better" methods are shown in the attached

#
# From Google translate
#
# Given the hemisphere with the equation z=sqrt(4-x^2-y^2).
# Verify that the given point lies on the hemisphere and
# find the equation of the tangent plane to the hemisphere
# at the given point
#

  restart;
  with(Student[MultivariateCalculus]):
  surf:= z^2+x^2+y^2=4:
  tp:= pt->expand(Gradient((rhs-lhs)(surf), [x,y,z]=convert(pt, list))[]^%T.(<x,y,z>-pt))=0:
  onSur:= pt-> evalb(eval(surf, [x=pt[1], y=pt[2], z=pt[3]])):
#
# Check point is on sphere
#
  onSur( <1,1,sqrt(2)> );
#
# Compute tangent plane
#
  tp( <1,1,sqrt(2)> );
#
# Check point is on sphere
#
  onSur( <sqrt(2), sqrt(2), 0> );
#
# Compute tangent plane
#
  tp( <sqrt(2), sqrt(2), 0> );
#
# Check point is on sphere
#
  onSur(  <2,0,0>  );
#
# Compute tangent plane
#
  tp( <2,0,0> );

true

 

-2*x+8-2*y-2*2^(1/2)*z = 0

 

true

 

-2*2^(1/2)*x+8-2*2^(1/2)*y = 0

 

true

 

-4*x+8 = 0

(1)

  restart;
  with(geom3d):
  _EnvXName := 'x': _EnvYName := 'y': _EnvZName := 'z':
  sphere(sph, z^2+x^2+y^2=4):
  point(P1, [1, 1, sqrt(2)]):
#
# Check point is on sphere
#
  evalb(eval( Equation(sph), [x=xcoord(P1), y=ycoord(P1), z=zcoord(P1)]));  
#
# Check point is on sphere
#
  point(P2, [sqrt(2), sqrt(2), 0]):
  evalb(eval( Equation(sph), [x=xcoord(P2), y=ycoord(P2), z=zcoord(P2)]));  
#
# Check point is on sphere
#
  point(P3, [2, 0, 0]):
  evalb(eval( Equation(sph), [x=xcoord(P3), y=ycoord(P3), z=zcoord(P3)]));
#
# Compute tangent planes
#
  Equation( TangentPlane(pl1, P1, sph));
  Equation( TangentPlane(pl2, P2, sph));
  Equation( TangentPlane(pl3, P3, sph));
#
# Draw everything - just for fun
#
  draw( [ sph(color=red, style=surface),
          P1(color=blue, symbol=solidsphere, symbolsize=20),
          P2(color=green, symbol=solidsphere, symbolsize=20),
          P3(color=yellow, symbol=solidsphere, symbolsize=20),
          pl1(color=blue, style=surface, transparency=0.4),
          pl2(color=green, style=surface, transparency=0.4),
          pl3(color=yellow, style=surface, transparency=0.4)
        ]
      );

true

 

true

 

true

 

4-x-y-2^(1/2)*z = 0

 

4-2^(1/2)*x-2^(1/2)*y = 0

 

4-2*x = 0

 

 

 

Download tanPlanes.mw

to the ecxample shown in the attached, maybe?

  restart;
  with(plots):
  doCol:= (c1, c2, c3)-> display
                         ( [ arrow
                             (  <0,0,255>,
                                 color=ColorTools:-Color( "RGB", [0,0,255])
                             ),
                             arrow
                             (  <0,255,0>,
                                color=ColorTools:-Color( "RGB", [0,255,0])
                             ),
                             arrow
                             (  <255,0,0>,
                                color=ColorTools:-Color( "RGB", [255,0,0])
                             ),
                             arrow
                             (  <c1,c2,c3>,
                                color=ColorTools:-Color( "RGB", [c1,c2,c3])
                             ),
                             textplot3d
                             ( [ c1, c2, c3,
                                 StringTools:-Join(convert~([c1, c2, c3], string), ", ")
                               ],
                               align=right,
                               font=[times, cold, 20]
                             )
                           ]
                         ):
#
# An example
#
  doCol(217, 43, 143);

 

 

Download rgbplt.mw

I haven't got Maple 17 (released 2013) installed - too old, even for me. Note that in your worksheet, with output=plot, only five iterations are used and the figure caption includes the statement

"The stopping criterion is not met"

The help for this command does not make clear how many iterations will be performed for each of the output options, so I assumethat with output=plot, Maple tries five iterations, then gives up. You can get around this by using the maxiterations option along with output=plot option, ie the code

Newton(P(x), x = 0.5, output = plot, tolerance = 10^(-6), stoppingcriterion = function_value, maxiterations = 10)

This shows that the stopping criterion is met after 6 iterations - whihc is the same as the command with the output=animation option

Why does output=plot only try five iterations, when output=animation apparently tries more - no idea!

 

 

exactly what you want - maybe the final plot in the attached?

restart

psi := -(1.600000000*10^(-12))*(-(7.369485980*10^14)*x^2*y-(1.208534863*10^15)*x^4*y-(1.100464934*10^15)*x^6*y+(6.165015570*10^14)*x^4*y^2+(6.152509407*10^14)*x^6*y^2-(5.933879812*10^14)*x^8*y+(3.524964826*10^14)*x^2*y^2+(5.500000000*10^12)*x^14*y^2+(8.779561331*10^13)*y^2+(1.021933440*10^11)*y^4+(1.638534652*10^13)*y^3-(1.932126733*10^14)*y+(1.132673864*10^10)*y^5+(3.880305000*10^11)*x^6*y^4-(4.665845924*10^13)*x^4*y^3+(1.335184945*10^13)*x^2*y^3-(7.445478720*10^13)*x^8*y^3+(7.410783600*10^10)*x^4*y^4+(3.839362913*10^14)*x^8*y^2-(3.504346560*10^11)*x^2*y^4-(2.158659379*10^13)*x^12*y+(1.535553910*10^14)*x^10*y^2-(1.807479066*10^14)*x^10*y+(3.665811328*10^12)*x^14*y+(1.495218750*10^12)*x^16*y+(3.437500000*10^11)*x^16*y^2-(9.402963557*10^13)*x^6*y^3+(1.406250000*10^11)*x^18*y-(1.230187500*10^11)*x^6*y^5+(1.252968750*10^11)*x^8*y^4+(1.666494000*10^11)*x^4*y^5-(7.525146240*10^10)*x^2*y^5-(3.061199062*10^13)*x^10*y^3-(6.493625000*10^12)*x^12*y^3+(3.843735156*10^13)*x^12*y^2-(5.625000000*10^11)*x^14*y^3)/(x^2+2.)^9-(.2460375000*((-6.737387592+2.235431590*y)*x^16+(-3.657978966*y^2+35.76690545*y-107.8482015)*x^14+(-42.22852207*y^2+249.9609307*y-754.9196770)*x^12+(-199.0720316*y^2+998.5820269*y-3019.038361)*x^10+(.8148148150*y^3-484.1849698*y^2+2496.766005*y-7546.088582)*x^8+(-.8000000000*y^4+2.523390946*y^3-611.4816515*y^2+4001.022222*y-12072.72831)*x^6+(1.083733335*y^4+.4819287219*y^3-303.4233996*y^2+4009.155072*y-12073.18307)*x^4+(-.4893657917*y^4-2.278902388*y^3+86.82806144*y^2+2292.310612*y-6899.426943)*x^2+0.7365863430e-1*y^4+.6645708495*y^3+106.5551164*y^2+570.9413454*y-1724.697565))*y/(x^2+2.)^9

-0.1600000000e-11*(-0.1932126733e15*y+0.8779561331e14*y^2+0.1021933440e12*y^4+0.1638534652e14*y^3+0.1132673864e11*y^5+0.1666494000e12*x^4*y^5-0.7525146240e11*x^2*y^5-0.5625000000e12*x^14*y^3-0.6493625000e13*x^12*y^3-0.3061199062e14*x^10*y^3+0.1252968750e12*x^8*y^4-0.1230187500e12*x^6*y^5+0.1406250000e12*x^18*y+0.3437500000e12*x^16*y^2+0.3843735156e14*x^12*y^2-0.2158659379e14*x^12*y+0.1535553910e15*x^10*y^2-0.1807479066e15*x^10*y-0.7445478720e14*x^8*y^3+0.3839362913e15*x^8*y^2+0.3880305000e12*x^6*y^4-0.9402963557e14*x^6*y^3+0.7410783600e11*x^4*y^4-0.4665845924e14*x^4*y^3-0.3504346560e12*x^2*y^4+0.1335184945e14*x^2*y^3+0.1495218750e13*x^16*y+0.5500000000e13*x^14*y^2+0.3665811328e13*x^14*y+0.6152509407e15*x^6*y^2+0.6165015570e15*x^4*y^2+0.3524964826e15*x^2*y^2-0.5933879812e15*x^8*y-0.1100464934e16*x^6*y-0.1208534863e16*x^4*y-0.7369485980e15*x^2*y)/(x^2+2.)^9-.2460375000*((-6.737387592+2.235431590*y)*x^16+(-3.657978966*y^2+35.76690545*y-107.8482015)*x^14+(-42.22852207*y^2+249.9609307*y-754.9196770)*x^12+(-199.0720316*y^2+998.5820269*y-3019.038361)*x^10+(.8148148150*y^3-484.1849698*y^2+2496.766005*y-7546.088582)*x^8+(-.8000000000*y^4+2.523390946*y^3-611.4816515*y^2+4001.022222*y-12072.72831)*x^6+(1.083733335*y^4+.4819287219*y^3-303.4233996*y^2+4009.155072*y-12073.18307)*x^4+(-.4893657917*y^4-2.278902388*y^3+86.82806144*y^2+2292.310612*y-6899.426943)*x^2+0.7365863430e-1*y^4+.6645708495*y^3+106.5551164*y^2+570.9413454*y-1724.697565)*y/(x^2+2.)^9

(1)

with(plots)

p1 := contourplot(psi, x = -3 .. 3, y = -.5 .. .5, coloring = ["Blue", "Grey"], axes = boxed, filledregions = true)

 

f := plottools:-transform(proc (x, y) options operator, arrow; [x, y, -1] end proc)
display([plot3d(psi, x = -3 .. 3, y = -.5 .. .5, style = surface, color = blue), f(p1)])

 

``

 

 

NULL

Download contPlot2.mw

A few points

  1. 'print' statements do not return anything from a procedure - you should be using a return statement
  2. if you wish to return a vector, why do you (implicitly) define it as a table? Wouldn't it be a better idea to (explcitly) define it as a vector?
  3. In the attached I fixed the above, and also deleted a few things that you don't need. The output is a four column matrix, mainly because the procedure exited on the first iteration, and I wanted to check that the error criterion was satisfied.
  4. I have made no attempt to check your algorithm, but I have added an execution group at the end which returns the real eigenvalues and eigenvectors, using Maple's built-in LinearAlgebra:-Eigenvectors() command. The values returned by your procedure do not seem to agree very well with this :-(


ev.mw

with your original worksheet is that in the definition of rot_mat, you have used the command MatrixPower(), which should have been LinearAlgebra[MatrixPower](). This is fixed in the attached.

You can avoid this issue (and make you code a little cleaner) by using the commands with(LinearAlgebra) and with(ArrayTools), so that you don't have to use 'long-form' package commands.

Both approaches are are shown in the attached

restart; unit_axis_cross_mat := unapply(`<,>`(`<|>`(0, -x[3], x[2]), `<|>`(x[3], 0, -x[1]), `<|>`(-x[2], x[1], 0)), x::Vector)

proc (x::Vector) options operator, arrow; rtable(1 .. 3, 1 .. 3, {(1, 2) = -x[3], (1, 3) = x[2], (2, 1) = x[3], (2, 3) = -x[1], (3, 1) = -x[2], (3, 2) = x[1]}, datatype = anything, subtype = Matrix, storage = rectangular, order = Fortran_order) end proc

(1)

unit_axis_cross_mat(`<,>`(1, 0, 0))

Matrix(%id = 36893488147927011804)

(2)

rot_mat := unapply(LinearAlgebra[IdentityMatrix](3)+unit_axis_cross_mat(`<,>`(x[1], x[2], x[3]))*sin(theta)+LinearAlgebra[MatrixPower](unit_axis_cross_mat(`<,>`(x[1], x[2], x[3])), 2)*(1-cos(theta)), x::Vector, theta)

proc (x::Vector, theta) options operator, arrow; rtable(1 .. 3, 1 .. 3, {(1, 1) = 1+(1-cos(theta))*(-x[2]^2-x[3]^2), (1, 2) = -sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (1, 3) = sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (2, 1) = sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (2, 2) = 1+(1-cos(theta))*(-x[1]^2-x[3]^2), (2, 3) = -sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (3, 1) = -sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (3, 2) = sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (3, 3) = 1+(1-cos(theta))*(-x[1]^2-x[2]^2)}, datatype = anything, subtype = Matrix, storage = rectangular, order = Fortran_order) end proc

(3)

rot_mat(`<,>`(1, 0, 0), 0)

Matrix(%id = 36893488147962579172)

(4)

 
trans_mat_ang := unapply(ArrayTools[Concatenate](1, ArrayTools[Concatenate](2, rot_mat(`<,>`(x[1], x[2], x[3]), theta), (LinearAlgebra[IdentityMatrix](3)-rot_mat(`<,>`(x[1], x[2], x[3]), theta)).`<,>`(p[1], p[2], p[3])), `<|>`(0, 0, 0, 1)), x::Vector, theta, p::Vector)

proc (x::Vector, theta, p::Vector) options operator, arrow; rtable(1 .. 4, 1 .. 4, {(1, 1) = 1+(1-cos(theta))*(-x[2]^2-x[3]^2), (1, 2) = -sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (1, 3) = sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (1, 4) = -(1-cos(theta))*(-x[2]^2-x[3]^2)*p[1]+(sin(theta)*x[3]-(1-cos(theta))*x[2]*x[1])*p[2]+(-sin(theta)*x[2]-(1-cos(theta))*x[3]*x[1])*p[3], (2, 1) = sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (2, 2) = 1+(1-cos(theta))*(-x[1]^2-x[3]^2), (2, 3) = -sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (2, 4) = (-sin(theta)*x[3]-(1-cos(theta))*x[2]*x[1])*p[1]-(1-cos(theta))*(-x[1]^2-x[3]^2)*p[2]+(sin(theta)*x[1]-(1-cos(theta))*x[3]*x[2])*p[3], (3, 1) = -sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (3, 2) = sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (3, 3) = 1+(1-cos(theta))*(-x[1]^2-x[2]^2), (3, 4) = (sin(theta)*x[2]-(1-cos(theta))*x[3]*x[1])*p[1]+(-sin(theta)*x[1]-(1-cos(theta))*x[3]*x[2])*p[2]-(1-cos(theta))*(-x[1]^2-x[2]^2)*p[3], (4, 4) = 1}, datatype = anything, subtype = Matrix, storage = rectangular, order = Fortran_order) end proc

(5)

trans_mat := unapply(`<,>`(ArrayTools[Concatenate](2, rot_mat(`<,>`(x[1], x[2], x[3]), theta), (LinearAlgebra[IdentityMatrix](3)-rot_mat(`<,>`(x[1], x[2], x[3]), theta)).`<,>`(p[1], p[2], p[3]))), x::Vector, p::Vector, theta)

proc (x::Vector, p::Vector, theta) options operator, arrow; rtable(1 .. 3, 1 .. 4, {(1, 1) = 1+(1-cos(theta))*(-x[2]^2-x[3]^2), (1, 2) = -sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (1, 3) = sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (1, 4) = -(1-cos(theta))*(-x[2]^2-x[3]^2)*p[1]+(sin(theta)*x[3]-(1-cos(theta))*x[2]*x[1])*p[2]+(-sin(theta)*x[2]-(1-cos(theta))*x[3]*x[1])*p[3], (2, 1) = sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (2, 2) = 1+(1-cos(theta))*(-x[1]^2-x[3]^2), (2, 3) = -sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (2, 4) = (-sin(theta)*x[3]-(1-cos(theta))*x[2]*x[1])*p[1]-(1-cos(theta))*(-x[1]^2-x[3]^2)*p[2]+(sin(theta)*x[1]-(1-cos(theta))*x[3]*x[2])*p[3], (3, 1) = -sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (3, 2) = sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (3, 3) = 1+(1-cos(theta))*(-x[1]^2-x[2]^2), (3, 4) = (sin(theta)*x[2]-(1-cos(theta))*x[3]*x[1])*p[1]+(-sin(theta)*x[1]-(1-cos(theta))*x[3]*x[2])*p[2]-(1-cos(theta))*(-x[1]^2-x[2]^2)*p[3]}, datatype = anything, subtype = Matrix, storage = rectangular, order = Fortran_order) end proc

(6)

trans_mat(`<,>`(1, 0, 0), `<,>`(1, 0, 0), 0)

Matrix(%id = 36893488148141183572)

(7)

NULL

restart; with(LinearAlgebra); with(ArrayTools); unit_axis_cross_mat := unapply(`<,>`(`<|>`(0, -x[3], x[2]), `<|>`(x[3], 0, -x[1]), `<|>`(-x[2], x[1], 0)), x::Vector)

proc (x::Vector) options operator, arrow; rtable(1 .. 3, 1 .. 3, {(1, 2) = -x[3], (1, 3) = x[2], (2, 1) = x[3], (2, 3) = -x[1], (3, 1) = -x[2], (3, 2) = x[1]}, datatype = anything, subtype = Matrix, storage = rectangular, order = Fortran_order) end proc

(8)

unit_axis_cross_mat(`<,>`(1, 0, 0))

Matrix(%id = 36893488147926986612)

(9)

rot_mat := unapply(IdentityMatrix(3)+unit_axis_cross_mat(`<,>`(x[1], x[2], x[3]))*sin(theta)+MatrixPower(unit_axis_cross_mat(`<,>`(x[1], x[2], x[3])), 2)*(1-cos(theta)), x::Vector, theta)

proc (x::Vector, theta) options operator, arrow; rtable(1 .. 3, 1 .. 3, {(1, 1) = 1+(1-cos(theta))*(-x[2]^2-x[3]^2), (1, 2) = -sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (1, 3) = sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (2, 1) = sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (2, 2) = 1+(1-cos(theta))*(-x[1]^2-x[3]^2), (2, 3) = -sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (3, 1) = -sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (3, 2) = sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (3, 3) = 1+(1-cos(theta))*(-x[1]^2-x[2]^2)}, datatype = anything, subtype = Matrix, storage = rectangular, order = Fortran_order) end proc

(10)

rot_mat(`<,>`(1, 0, 0), 0)

Matrix(%id = 36893488148113533156)

(11)

 
trans_mat_ang := unapply(Concatenate(1, Concatenate(2, rot_mat(`<,>`(x[1], x[2], x[3]), theta), (IdentityMatrix(3)-rot_mat(`<,>`(x[1], x[2], x[3]), theta)).`<,>`(p[1], p[2], p[3])), `<|>`(0, 0, 0, 1)), x::Vector, theta, p::Vector)

proc (x::Vector, theta, p::Vector) options operator, arrow; rtable(1 .. 4, 1 .. 4, {(1, 1) = 1+(1-cos(theta))*(-x[2]^2-x[3]^2), (1, 2) = -sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (1, 3) = sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (1, 4) = -(1-cos(theta))*(-x[2]^2-x[3]^2)*p[1]+(sin(theta)*x[3]-(1-cos(theta))*x[2]*x[1])*p[2]+(-sin(theta)*x[2]-(1-cos(theta))*x[3]*x[1])*p[3], (2, 1) = sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (2, 2) = 1+(1-cos(theta))*(-x[1]^2-x[3]^2), (2, 3) = -sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (2, 4) = (-sin(theta)*x[3]-(1-cos(theta))*x[2]*x[1])*p[1]-(1-cos(theta))*(-x[1]^2-x[3]^2)*p[2]+(sin(theta)*x[1]-(1-cos(theta))*x[3]*x[2])*p[3], (3, 1) = -sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (3, 2) = sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (3, 3) = 1+(1-cos(theta))*(-x[1]^2-x[2]^2), (3, 4) = (sin(theta)*x[2]-(1-cos(theta))*x[3]*x[1])*p[1]+(-sin(theta)*x[1]-(1-cos(theta))*x[3]*x[2])*p[2]-(1-cos(theta))*(-x[1]^2-x[2]^2)*p[3], (4, 4) = 1}, datatype = anything, subtype = Matrix, storage = rectangular, order = Fortran_order) end proc

(12)

trans_mat := unapply(`<,>`(Concatenate(2, rot_mat(`<,>`(x[1], x[2], x[3]), theta), (IdentityMatrix(3)-rot_mat(`<,>`(x[1], x[2], x[3]), theta)).`<,>`(p[1], p[2], p[3]))), x::Vector, p::Vector, theta)

proc (x::Vector, p::Vector, theta) options operator, arrow; rtable(1 .. 3, 1 .. 4, {(1, 1) = 1+(1-cos(theta))*(-x[2]^2-x[3]^2), (1, 2) = -sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (1, 3) = sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (1, 4) = -(1-cos(theta))*(-x[2]^2-x[3]^2)*p[1]+(sin(theta)*x[3]-(1-cos(theta))*x[2]*x[1])*p[2]+(-sin(theta)*x[2]-(1-cos(theta))*x[3]*x[1])*p[3], (2, 1) = sin(theta)*x[3]+(1-cos(theta))*x[2]*x[1], (2, 2) = 1+(1-cos(theta))*(-x[1]^2-x[3]^2), (2, 3) = -sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (2, 4) = (-sin(theta)*x[3]-(1-cos(theta))*x[2]*x[1])*p[1]-(1-cos(theta))*(-x[1]^2-x[3]^2)*p[2]+(sin(theta)*x[1]-(1-cos(theta))*x[3]*x[2])*p[3], (3, 1) = -sin(theta)*x[2]+(1-cos(theta))*x[3]*x[1], (3, 2) = sin(theta)*x[1]+(1-cos(theta))*x[3]*x[2], (3, 3) = 1+(1-cos(theta))*(-x[1]^2-x[2]^2), (3, 4) = (sin(theta)*x[2]-(1-cos(theta))*x[3]*x[1])*p[1]+(-sin(theta)*x[1]-(1-cos(theta))*x[3]*x[2])*p[2]-(1-cos(theta))*(-x[1]^2-x[2]^2)*p[3]}, datatype = anything, subtype = Matrix, storage = rectangular, order = Fortran_order) end proc

(13)

trans_mat(`<,>`(1, 0, 0), `<,>`(1, 0, 0), 0)

Matrix(%id = 36893488148113533756)

(14)

NULL

NULL

``

Download HomTrans.mw

 

to use the option 'useint' in the dsolve() command, as shown in the attached

restart

ode := diff(`&theta;__1`(y), y, y)+Br*((-3*y*(k*sigma+2*Q-sigma)/sigma^2-k-1)*(-(3*(y+sigma))*(-(9*sigma^2+9*y^2)*(n-1)*(k*sigma+2*Q-sigma)^3/(4*sigma^7)-3*y*(n-1)*(k+1)*(k*sigma+2*Q-sigma)^2/sigma^5-3*(k+1)^2*(n-1)*(k*sigma+2*Q-sigma)/(2*sigma^3)-(-120*lambda*sigma^4-(63*k^2-36*k+63)*(k-1)*(n-1)*sigma^3-288*Q*(n-1)*(k^2-(11/8)*k+1)*sigma^2-486*Q^2*(n-1)*(k-1)*sigma-324*Q^3*(n-1))/(15*sigma^5))/(16*sigma^2)-(3*y-3*sigma)*(-(9*sigma^2+9*y^2)*(n-1)*(k*sigma+2*Q-sigma)^3/(4*sigma^7)-3*y*(n-1)*(k+1)*(k*sigma+2*Q-sigma)^2/sigma^5-3*(k+1)^2*(n-1)*(k*sigma+2*Q-sigma)/(2*sigma^3)-(-120*lambda*sigma^4-(63*k^2-36*k+63)*(k-1)*(n-1)*sigma^3-288*Q*(n-1)*(k^2-(11/8)*k+1)*sigma^2-486*Q^2*(n-1)*(k-1)*sigma-324*Q^3*(n-1))/(15*sigma^5))/(16*sigma^2)-(3*y-3*sigma)*(y+sigma)*(-9*y*(n-1)*(k*sigma+2*Q-sigma)^3/(2*sigma^7)-(3*(n-1))*(k+1)*(k*sigma+2*Q-sigma)^2/sigma^5)/(16*sigma^2))/sigma+(n-1)*(-3*y*(k*sigma+2*Q-sigma)/sigma^2-k-1)^4/(32*sigma^4)) = 0

diff(diff(theta__1(y), y), y)+Br*((-3*y*(k*sigma+2*Q-sigma)/sigma^2-k-1)*(-(3/16)*(y+sigma)*(-(1/4)*(9*sigma^2+9*y^2)*(n-1)*(k*sigma+2*Q-sigma)^3/sigma^7-3*y*(n-1)*(k+1)*(k*sigma+2*Q-sigma)^2/sigma^5-(3/2)*(k+1)^2*(n-1)*(k*sigma+2*Q-sigma)/sigma^3-(1/15)*(-120*lambda*sigma^4-(63*k^2-36*k+63)*(k-1)*(n-1)*sigma^3-288*Q*(n-1)*(k^2-(11/8)*k+1)*sigma^2-486*Q^2*(n-1)*(k-1)*sigma-324*Q^3*(n-1))/sigma^5)/sigma^2-(1/16)*(3*y-3*sigma)*(-(1/4)*(9*sigma^2+9*y^2)*(n-1)*(k*sigma+2*Q-sigma)^3/sigma^7-3*y*(n-1)*(k+1)*(k*sigma+2*Q-sigma)^2/sigma^5-(3/2)*(k+1)^2*(n-1)*(k*sigma+2*Q-sigma)/sigma^3-(1/15)*(-120*lambda*sigma^4-(63*k^2-36*k+63)*(k-1)*(n-1)*sigma^3-288*Q*(n-1)*(k^2-(11/8)*k+1)*sigma^2-486*Q^2*(n-1)*(k-1)*sigma-324*Q^3*(n-1))/sigma^5)/sigma^2-(1/16)*(3*y-3*sigma)*(y+sigma)*(-(9/2)*y*(n-1)*(k*sigma+2*Q-sigma)^3/sigma^7-3*(n-1)*(k+1)*(k*sigma+2*Q-sigma)^2/sigma^5)/sigma^2)/sigma+(1/32)*(n-1)*(-3*y*(k*sigma+2*Q-sigma)/sigma^2-k-1)^4/sigma^4) = 0

(1)

bc := `&theta;__1`(-sigma) = 0, `&theta;__1`(sigma) = 0

theta__1(-sigma) = 0, theta__1(sigma) = 0

(2)

sol := dsolve({bc, ode}, useint)

theta__1(y) = (27/20)*Br*(y+sigma)*(-(5/9)*lambda*(k-1)*sigma^9+(-(10/27)*lambda*(k+1)*y+(-(149/432)*n+149/432)*k^4+((49/108)*n-49/108)*k^3+(-(29/72)*n+29/72)*k^2+((49/108)*n-49/108)*k+149/432-(10/9)*Q*lambda-(149/432)*n)*sigma^8-(11/6)*(k-1)*((10/33)*y^2*lambda+(5/36)*(n-1)*(k+1)*(k^2-(14/11)*k+1)*y+(n-1)*(k^2-(2/11)*k+1)*Q)*sigma^7+(((-(1/8)*n+1/8)*k^4+(-1/2+(1/2)*n)*k^3+(-(3/4)*n+3/4)*k^2+(-1/2+(1/2)*n)*k-(1/8)*n+1/8-(10/9)*Q*lambda)*y^2-(145/108)*(n-1)*Q*(k+1)*(k^2-(50/29)*k+1)*y-(23/6)*(n-1)*(k^2-(26/23)*k+1)*Q^2)*sigma^6-4*(k-1)*(n-1)*(-(1/32)*(k+1)*(k-1)^2*y^3+(1/4)*Q*(k-1)^2*y^2+(5/8)*Q^2*(k+1)*y+Q^3)*sigma^5-2*(n-1)*(-(1/32)*(k-1)^4*y^4-(3/8)*Q*(k+1)*(k-1)^2*y^3+(3/2)*Q^2*(k-1)^2*y^2+(5/6)*Q^3*(k+1)*y+Q^4)*sigma^4-4*(-(1/8)*(k-1)^2*y^2-(3/8)*Q*(k+1)*y+Q^2)*(k-1)*(n-1)*Q*y^2*sigma^3-2*(n-1)*Q^2*(-(3/4)*(k-1)^2*y^2-(1/2)*Q*(k+1)*y+Q^2)*y^2*sigma^2+2*Q^3*y^4*(n-1)*(k-1)*sigma+Q^4*y^4*(n-1))*(y-sigma)/sigma^12

(3)

NULL

Download odeint.mw

The code in the attached, uses

Q=[0.5617, 0.4392, 0.2564, 0.1645, 0.0659]
lambda=[0.0096, 0.0010, 0.0093, 0.0075, 0.0031]

to produce an array of 25 plots, organised as 5x5. Each individual plot contains nine curves, given by

k = 0.1*j, We = 0.1, Br = 0.3, x = 0  with j=1..9

So far as I can tell, you want a further five such plot arrays based on diifferent parameter variations - these are left as an exercise

Plot arrays do not display on this website, so you will have to download the following

pltArr.mw

in your procedure is returning non-numeric values. The solve() command returns non-numeric values, whenever

[[i = 20., x = x, y = 0.], [i = 40., x = x, y = 0.], [i = 60., x = x, y = 0.], [i = 80., x = x, y = 0.]]

where 'i' is the index in the command

display([seq(Fig((2*Pi*i)/40), i = 1 .. 80)], insequence = true);

In other words the solve() command fails whenerver the argument passed to the procedure is an integer multiple of Pi

 

  1. You can't usee square brackets, ie '[]' to group terms in Maple. [] brackets are used for lists. Fixed in the attached
  2. Yo attempt to assign to the variable 'define' whichi is a Maple keyword. The only way to do this is use the 'local define' command,- fixed in the attached.
  3. You want to evalue the ODE de1 with values give by 'testExps'. However the latter is defined nowhere in your worksheet - commented out in the attached
  4. I think it unlikely that you will be able to obtain a usable 'power series' in the variable 'we', because so many terms containing 'we' are raised to the power (n-1)/2 where n is unknown. Now if 'n' is known, and is an odd integer, it may be possible

Fixes (so far) are shown in the attached

restart

_local(define)

Warning, A new binding for the name `define` has been created. The global instance of this name is still accessible using the :- prefix, :-`define`.  See ?protect for details.

 

ode := diff((1+we*(diff(u(y), y))^2)^((n-1)*(1/2))*u(y), y) = diff(p(x), x)

2*(1+we*(diff(u(y), y))^2)^((1/2)*n-1/2)*((1/2)*n-1/2)*we*(diff(u(y), y))*(diff(diff(u(y), y), y))*u(y)/(1+we*(diff(u(y), y))^2)+(1+we*(diff(u(y), y))^2)^((1/2)*n-1/2)*(diff(u(y), y)) = diff(p(x), x)

(1)

NULL

define := [u(y) = u__0(y)+we*u__1(y)+we^2*u__2(y), p(x) = p__0(x)+we*p__1(x)+we^2*p__2(x)]

[u(y) = u__0(y)+we*u__1(y)+we^2*u__2(y), p(x) = p__0(x)+we*p__1(x)+we^2*p__2(x)]

(2)

eval(ode, define)

2*(1+we*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))^2)^((1/2)*n-1/2)*((1/2)*n-1/2)*we*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))*(diff(diff(u__0(y), y), y)+we*(diff(diff(u__1(y), y), y))+we^2*(diff(diff(u__2(y), y), y)))*(u__0(y)+we*u__1(y)+we^2*u__2(y))/(1+we*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))^2)+(1+we*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))^2)^((1/2)*n-1/2)*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y))) = diff(p__0(x), x)+we*(diff(p__1(x), x))+we^2*(diff(p__2(x), x))

(3)

de2 := collect(lhs(%)-rhs(%), delta)

2*(1+we*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))^2)^((1/2)*n-1/2)*((1/2)*n-1/2)*we*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))*(diff(diff(u__0(y), y), y)+we*(diff(diff(u__1(y), y), y))+we^2*(diff(diff(u__2(y), y), y)))*(u__0(y)+we*u__1(y)+we^2*u__2(y))/(1+we*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))^2)+(1+we*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))^2)^((1/2)*n-1/2)*(diff(u__0(y), y)+we*(diff(u__1(y), y))+we^2*(diff(u__2(y), y)))-(diff(p__0(x), x))-we*(diff(p__1(x), x))-we^2*(diff(p__2(x), x))

(4)

coeff(de2, we, 0)

Error, unable to compute coeff

 

"Extract the ODE from de2 which is the  #` coefficient of (we)^1, then substitute the value`  #` for u__0(y) from sol1 above `  "

Error, unable to parse

"Extract the ODE from de2 which is the  #` coefficient of (we)^1, then substitute the value`  #` for u__0(y) from sol1 above `  "

 

NULL


 

Download serode.mw

but you also seem to believe that the variables 'phi' and 'varphi' are identical - they are not!

Fixing all of the above leads to the attached

restart; a := delta[c]*(1-(1-`&varphi;`/(kc-3/2))^(-kc+3/2))+delta[h]*sigma[h]*(1-(1-`&varphi;`/(sigma[h]*(kh-3/2)))^(-kh+3/2))-(1/18)*delta[b]*(((M-u0b+sqrt(3)*sqrt(mu*sigma[b]))^2+2*mu*`&varphi;`)^(3/2)-(M-u0b+sqrt(3)*sqrt(mu*sigma[b]))^3-((M-u0b-sqrt(3)*sqrt(mu*sigma[b]))^2+2*mu*`&varphi;`)^(3/2)+((M-u0b-sqrt(3)*sqrt(mu*sigma[b]))^2)^(3/2))*sqrt(3)/(mu*sqrt(mu*sigma[b]))-(1/18)*(((M+sqrt(3)*sqrt(sigma[i]))^2-2*`&varphi;`)^(3/2)-(M+sqrt(3)*sqrt(sigma[i]))^3-((M-sqrt(3)*sqrt(sigma[i]))^2-2*`&varphi;`)^(3/2)+(M-sqrt(3)*sqrt(sigma[i]))^3)*sqrt(3)/sqrt(sigma[i])

delta[c]*(1-(1-varphi/(kc-3/2))^(-kc+3/2))+delta[h]*sigma[h]*(1-(1-varphi/(sigma[h]*(kh-3/2)))^(-kh+3/2))-(1/18)*delta[b]*(((M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))^2+2*mu*varphi)^(3/2)-(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))^3-((M-u0b-3^(1/2)*(mu*sigma[b])^(1/2))^2+2*mu*varphi)^(3/2)+((M-u0b-3^(1/2)*(mu*sigma[b])^(1/2))^2)^(3/2))*3^(1/2)/(mu*(mu*sigma[b])^(1/2))-(1/18)*(((M+3^(1/2)*sigma[i]^(1/2))^2-2*varphi)^(3/2)-(M+3^(1/2)*sigma[i]^(1/2))^3-((M-3^(1/2)*sigma[i]^(1/2))^2-2*varphi)^(3/2)+(M-3^(1/2)*sigma[i]^(1/2))^3)*3^(1/2)/sigma[i]^(1/2)

(1)

taylor(a, varphi = 0, 4)

series((-(1/18)*delta[b]*(csgn(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))*(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))^3-(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))^3+csgn(-M+u0b+3^(1/2)*(mu*sigma[b])^(1/2))*(M-u0b-3^(1/2)*(mu*sigma[b])^(1/2))^3+((M-u0b-3^(1/2)*(mu*sigma[b])^(1/2))^2)^(3/2))*3^(1/2)/(mu*(mu*sigma[b])^(1/2))-(1/18)*(csgn(M+3^(1/2)*sigma[i]^(1/2))*(M+3^(1/2)*sigma[i]^(1/2))^3-(M+3^(1/2)*sigma[i]^(1/2))^3+csgn(-M+3^(1/2)*sigma[i]^(1/2))*(M-3^(1/2)*sigma[i]^(1/2))^3+(M-3^(1/2)*sigma[i]^(1/2))^3)*3^(1/2)/sigma[i]^(1/2))+(-delta[c]-delta[h]-(1/18)*delta[b]*(3*csgn(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))*(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))*mu+3*csgn(-M+u0b+3^(1/2)*(mu*sigma[b])^(1/2))*(M-u0b-3^(1/2)*(mu*sigma[b])^(1/2))*mu)*3^(1/2)/(mu*(mu*sigma[b])^(1/2))-(1/18)*(-3*csgn(M+3^(1/2)*sigma[i]^(1/2))*(M+3^(1/2)*sigma[i]^(1/2))-3*csgn(-M+3^(1/2)*sigma[i]^(1/2))*(M-3^(1/2)*sigma[i]^(1/2)))*3^(1/2)/sigma[i]^(1/2))*varphi+(-(1/2)*delta[c]*(2*kc-1)/(2*kc-3)-(1/2)*delta[h]*(2*kh-1)/(sigma[h]*(2*kh-3))-(1/18)*delta[b]*((3/2)*csgn(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))*mu^2/(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))+(3/2)*csgn(-M+u0b+3^(1/2)*(mu*sigma[b])^(1/2))*mu^2/(M-u0b-3^(1/2)*(mu*sigma[b])^(1/2)))*3^(1/2)/(mu*(mu*sigma[b])^(1/2))-(1/18)*((3/2)*csgn(M+3^(1/2)*sigma[i]^(1/2))/(M+3^(1/2)*sigma[i]^(1/2))+(3/2)*csgn(-M+3^(1/2)*sigma[i]^(1/2))/(M-3^(1/2)*sigma[i]^(1/2)))*3^(1/2)/sigma[i]^(1/2))*varphi^2+(-(1/6)*delta[c]*(4*kc^2-1)/(2*kc-3)^2-(1/6)*delta[h]*(4*kh^2-1)/(sigma[h]^2*(2*kh-3)^2)-(1/18)*delta[b]*(-(1/2)*csgn(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))*mu^3/(M-u0b+3^(1/2)*(mu*sigma[b])^(1/2))^3-(1/2)*csgn(-M+u0b+3^(1/2)*(mu*sigma[b])^(1/2))*mu^3/(M-u0b-3^(1/2)*(mu*sigma[b])^(1/2))^3)*3^(1/2)/(mu*(mu*sigma[b])^(1/2))-(1/18)*((1/2)*csgn(M+3^(1/2)*sigma[i]^(1/2))/(M+3^(1/2)*sigma[i]^(1/2))^3+(1/2)*csgn(-M+3^(1/2)*sigma[i]^(1/2))/(M-3^(1/2)*sigma[i]^(1/2))^3)*3^(1/2)/sigma[i]^(1/2))*varphi^3+O(varphi^4),varphi,4)

(2)

NULL

NULL

Download tayl.mw

Document Mode + 2D Input + Units

You do like pile up error-prone complexity, just to make things look 'pretty'

Anyhow, maybe the attached is what you were hoping for. The double square brackets (  '[[..]]') whihc appear around the units are a quirk of this site - they do not appear in the actual worksheet, honest

Operating parameters

 

restart; with(Units[Standard])

NULL

Units:-AddUnit(nanoHenry, 'spelling' = 'nH', 'conversion' = henry*10^(-9)); Units:-AddUnit(nanoFarad, 'spelling' = 'nF', 'conversion' = farad*10^(-9))

NULL

Vinmax := 300*Unit(V) ``

Vinnom := 270*Unit(V)

Vinmin := 225*Unit(V) 

Vout := 48*Unit(V) 

N[r] := evalf(Vinnom/(4*Vout)) = 1.406250000NULL

Pout := 240*Unit(watt) 

V[f] := .5*Unit(V) 

Voutm := Vout+V[f] 
f[r] := 100*Unit(kHz)
Gain Calculations = 48.5*Units:-Unit(V)NULL

 

 

Mmax := evalf(Vinnom/Vinmin) = 1.200000000NULL

Mmin := evalf(Vinnom/Vinmax) = .9000000000NULL

msel := 4.6

Q := .4

K := proc (Qx, fx, mx) options operator, arrow; fx^2*(mx-1)/sqrt((mx*fx^2-1)^2+fx^2*(fx^2-1)^2*(mx-1)^2*Qx^2) end proc =
proc (Qx, fx, mx) options operator, arrow; Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`^`(fx, 2), Units:-Standard:-`+`(mx, -1)), Units:-Standard:-`/`(Units:-Standard:-sqrt(Units:-Standard:-`+`(Units:-Standard:-`^`(Units:-Standard:-`+`(Units:-Standard:-`*`(mx, Units:-Standard:-`^`(fx, 2)), -1), 2), Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`^`(fx, 2), Units:-Standard:-`^`(Units:-Standard:-`+`(Units:-Standard:-`^`(fx, 2), -1), 2)), Units:-Standard:-`^`(Units:-Standard:-`+`(mx, -1), 2)), Units:-Standard:-`^`(Qx, 2)))))) end proc
NULL

fxminc := solve(diff(K(Q, fx, msel), fx) = 0, fx)

0., -.5240422538, .5240422538, -.9318695046-1.002841421*I, .9318695046+1.002841421*I, -.9318695046+1.002841421*I, .9318695046-1.002841421*I

(1)

Qmin := Q*Vinmin/Vinmax = .3000000000NULL

Kmax := K(Qmin, fxminc[3], msel) = 2.027158684NULL

evalb(Kmax > Mmax) = trueNULL

NULL

fxmin := solve(K(Qmin, fx, msel) = Mmax, fx)

-.3924664996, .3924664996, -.7784455183, .7784455183

(2)

frmin := fxmin[4]*f[r] = 77.84455183*Units:-Unit(kHz)NULL

fxmax := solve(K(Q, fx, msel) = Mmin, fx) = -.3796681098, .3796681098, -1.240943551, 1.240943551NULL

frmax := fxmax[4]*f[r] = 124.0943551*Units:-Unit(kHz)NULL

 

Magnetics Calculations

 

Rac := evalf(8*N[r]^2*Voutm^2/(Pi^2*Pout)) = 15.71041104*Units:-Unit(`&Omega;`)NULL

syscl := solve({Cr > 0, Lr > 0, Q = sqrt(Lr/Cr)/Rac, f[r] = 1/(2*Pi*sqrt(Lr*Cr))}, {Cr, Lr})

{Cr = 0.2532634930e-6*Units:-Unit(F), Lr = 0.1000155830e-4*Units:-Unit(H)}

(3)

NULL

convert(rhs(syscl[2]*msel)-rhs(syscl[2]), 'units', nH) = 36005.60988*Units:-Unit(nH)NULL

convert(rhs(syscl[1]), 'units', nF) = 253.2634930*Units:-Unit(nF)NULL

NULL

Bmax := .2*Unit('T')

Vpk := 470*Unit('V')NULL

NULL

Lp := Unit('H')

 

Ls := (N[r]^2/Lp)^(-1) = .5056790125*Units:-Unit(H)NULL

NULL``

NULL

Controller Calculations

 

NULL
sysrf := solve({Imax = 2.5*Unit('V')*(1/rfmax+1/rfmin), Imax = 6*Unit('ns')*Unit('uA')/(1/(2*frmax)-150*Unit('ns')), Imin = 2.5*Unit('V')/rfmin, Imin = 6*Unit('ns')*Unit('uA')/(1/(2*frmin)-150*Unit('ns'))}, {Imax, Imin, rfmax, rfmin})

{Imax = 0.1546713797e-8*Units:-Unit(A), Imin = 0.9564714498e-9*Units:-Unit(A), rfmax = 4235548350.*Units:-Unit(`&Omega;`), rfmin = 2613773783.*Units:-Unit(`&Omega;`)}

(4)

NULL

Download unitsAgain.mw

you were hoping to chieve something similar to the animation shown in the attached?

In future please use the big, green up-arrow in the Mapleprimes toolbar to upload a actual worksheet. When you cut-and-paste as  in your original question, responders have too go through it line-by-line to work out what is Maple inpu, what is Maple output, what is comment, what is plaintext etc etc.  This is very tedious!

  restart;
  with(plots):
  _local(D):

EQ := proc(M, N)
           local eq;
           eq := (y - M[2])/(x - M[1]) = (N[2] - M[2])/(N[1] - M[1]);
      end proc:

#On considère un trapèze dans lequel une base est fixe l'autre base a une longueur constante et la somme des 2 autres côtés est constaante.
#Trouver :
#1-. le lieu des sommets mobiles.
  A := [xA, 0]:
  B := [xA + a, 0]:
  D := [xD, yD]:
  C := [xD + b, yD]:
  EQ(B, C):
  E := [xA + a - b, 0]:
  Omega1 := (A + E)/2:
#Application numérique :
#Lieux des sommets C et D

  xA := -5:
  a := 13:#a>=b
  b := 7:
  c := -3:
  xD := -6:
  xC := xD + c:

  A:
  B:
  C:
  D:
  Ll:=11:
  aa:= Ll/2:
  cc := (a - b)/2:
  bb := sqrt(aa^2 - cc^2):
  el1 := (x - Omega1[1])^2/aa^2 + y^2/bb^2 = 1:
  sol := solve(subs(x = xD, (x - Omega1[1])^2/aa^2 + y^2/bb^2 = 1), y):
  yD := sol[1]:
  el2 := (x - Omega1[1] - b)^2/aa^2 + y^2/bb^2 = 1:
  EL1 := implicitplot(el1, x = -9 .. 4, y = -6 .. 6, color = blue):
  EL2 := implicitplot(el2, x = -9 .. 12, y = -6 .. 12, color = blue):
  Trap := polygonplot([A, B, C, D], color = blue, filled = true, transparency = 0.9):
  Points := pointplot([A[], B[], C[], C[], D[], E[], Omega1[]], symbol = solidcircle, color = [red], symbolsize = 6):
  tex := textplot([[A[], "A"], [B[], "B"], [C[], "C"], [D[], "D"], [E[], "E"], [Omega1[], "&Omega;1"]], align = ["above", "right"]):
  display([Trap, EL1, EL2, tex, Points], axes = normal, scaling = constrained):
  Fig := proc(xD)
              local yD, D, C,Points,tex;
              global A, B, b, Omega1, xA, xB, EL1, EL2;
              subs(x = xD, (x - Omega1[1])^2/aa^2 + y^2/bb^2 = 1);
              solve(subs(x = xD, (x - Omega1[1])^2/aa^2 + y^2/bb^2 = 1), y);
              yD := %[1]; D:= [xD, yD]; C := [xD + b, yD];
              Points := pointplot([A[], B[], C[], C[], D[], E[], Omega1[]], symbol = solidcircle, color = [red], symbolsize = 6):
              tex := textplot([[A[], "A"], [B[], "B"], [C[], "C"], [D[], "D"], [E[], "E"], [Omega1[], "&Omega;1"]], align = ["above", "right"]):
              display([polygonplot([A, B, C, D], color = blue, filled = true, transparency = 0.9), Points,tex,EL1, EL2], axes = normal, scaling = constrained);
         end proc:

Fig(2):
Fig(-4):
display( [seq(Fig(-6 + 3*i/10), i = 1..20)], insequence=true);

 

 

Download trapeze.mw

as in the attached

  restart;
  interface(version):`Y__a,b`:=1;

1

(1)

#
# With 1-D input, use backticks
# Without them this fails
#
  X__a,b:=1;

Error, mismatched multiple assignment of 2 variables on the left side and 1 value on the right side

 

#
# But this does not
#
  `Y__a,b`:=1;
  `Z__a,b,c`:=1;

1

 

1

(2)

`X__a,b` := 1; `Y__a,b` := 1

1

 

1

(3)

``

Download backT.mw

First 11 12 13 14 15 16 17 Last Page 13 of 207