tomleslie

13876 Reputation

20 Badges

15 years, 164 days

MaplePrimes Activity


These are answers submitted by tomleslie

as shown in the attached.

Outside the plotted range the solution grows very rapidly and produces "singluarities" at (roughly) -5.5 and 6.8

  ODE:=diff(u(x),x$4)-sin(x)*diff(u(x),x$2)+u(x)*diff(u(x),x)-u(x)=1-sin(x);
  ICS:=u(0)=2, D(u)(0)=0, (D@@2)(u)(0)=-1, (D@@3)(u)(0)=0;
  sols:=dsolve( [ODE, ICS], numeric);
  plots:-odeplot( sols, [x, u(x)], x=-2..5);

diff(diff(diff(diff(u(x), x), x), x), x)-sin(x)*(diff(diff(u(x), x), x))+u(x)*(diff(u(x), x))-u(x) = 1-sin(x)

 

u(0) = 2, (D(u))(0) = 0, ((D@@2)(u))(0) = -1, ((D@@3)(u))(0) = 0

 

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 27, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..65, {(1) = 4, (2) = 4, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0, (64) = -1, (65) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.16825529186138485e-2, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..4, {(1) = 2.0, (2) = .0, (3) = -1.0, (4) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..4, {(1) = .1, (2) = .1, (3) = .1, (4) = .1}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = 0, (2) = 0, (3) = 0, (4) = 0}, datatype = integer[8]), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = 0, (2) = 0, (3) = 0, (4) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..4, {(1) = 2.0, (2) = .0, (3) = -1.0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = -1.0, (3) = .0, (4) = 3.0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = u(x), Y[2] = diff(u(x),x), Y[3] = diff(diff(u(x),x),x), Y[4] = diff(diff(diff(u(x),x),x),x)]`; YP[4] := 1-sin(X)+sin(X)*Y[3]-Y[1]*Y[2]+Y[1]; YP[1] := Y[2]; YP[2] := Y[3]; YP[3] := Y[4]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = u(x), Y[2] = diff(u(x),x), Y[3] = diff(diff(u(x),x),x), Y[4] = diff(diff(diff(u(x),x),x),x)]`; YP[4] := 1-sin(X)+sin(X)*Y[3]-Y[1]*Y[2]+Y[1]; YP[1] := Y[2]; YP[2] := Y[3]; YP[3] := Y[4]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 27 ) = (""), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] ))  ] ); _y0 := Array(0..4, {(1) = 0., (2) = 2., (3) = 0., (4) = -1.}); _vmap := array( 1 .. 4, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 4 ) = (4)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [x, u(x), diff(u(x), x), diff(diff(u(x), x), x), diff(diff(diff(u(x), x), x), x)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

 

 

 


 

Download odeProb2.mw

you are using Maple 2021, but whn I check the help for NonIsomorphicGraphs() in my version of Maple 2021, it states (emphasis added)

outputform = graph, adjacency, or bits
The outputform option specifies the form used to represent output graphs. This option is only valid for output = graphs or output = iterator. When outputform=bits (the default) the graph is output as an integer such that the adjacency matrix for the graph can be constructed by the bits set in the output integer. Specifically the integer is the one formed by examining the upper triangular portion of the symmetric adjacency Matrix, excluding the diagonal, and building up, from least to most significant bit order, the entries, moving left to right, then down, by using a 1 digit if the edge is present, and a 0 digit otherwise. There is an example that constructs the adjacency matrix from the bits representation in the examples section below. When outputform=adjacency, the adjacency Matrix of the graph is constructed as a v x v integer[1] Matrix. When outputform=graph, Graph structures are constructed.

From this I would conclude

  1. Identifying a graph by using an integer must to be very efficient in terms of memory usage
  2. The trade-off for having a very memory-efficient storage mechanism, has the side-effect that in order to construct the actual form of the desired object (ie a graph), additional processing is necessary. In this case the 'bits' have to be used to construct an 'adjacency matrix' and the 'adjaceny matrix'. is used to construct the graph
  3. So Maple would seem to be providing a tradeoff between memory storage and speed

 

 

using floating point numbers in mathematical calculations unless it is absolutely necessary (although I would have expected MAple to handle this case).

See the attached for workarounds

  restart;
  with(inttrans):
  y := z -> invlaplace(exp(-s)/s, s, z);
#
# Don't use floats unless you *have* to, Use
# rational expressions instead. For example
#
  sol1:=y(t - 1);
  sol2:=y(t - 11/10);
#
# Now plot the above
#
  plot( [sol1,sol2], t=0..3, color=[red, blue]);
#
# alternatively, compute the general result
#
  gen:=y(t-a);
#
# then evaluate for specific values
#
  sol3:=eval(gen, a=1);
  sol4:=eval(gen, a=1.1);
#
# Now p[lot the above
#
  plot( [sol3,sol4], t=0..3, color=[red, blue]);

proc (z) options operator, arrow; invlaplace(exp(-s)/s, s, z) end proc

 

Heaviside(t-2)

 

Heaviside(t-21/10)

 

 

Heaviside(t-a-1)

 

Heaviside(t-2)

 

Heaviside(t-2.1)

 

 

 

Download lap.mw

as in the attached (although the answer is still a bit lengthy!


 

restart:
E := 210*10^9:
L := 4:
d1 := L/6:
d2 := (2*L)/6:
d3 := (3*L)/6:
d4 := (4*L)/6:
d5 := (5*L)/6:
b := 0.01:
h := 0.005:
eq := diff(Uy(x), x, x) - piecewise(x < d1, 12*F*x/(E*b*h^3), d1 < x and x < d2, 12*((F + F1)*x - F1*d1)/(E*b*h^3), d2 < x and x < d3, 12*((F + F1 + F2)*x - F1*d1 - F2*d2)/(E*b*h^3), d3 < x and x < d4, 12*((F5 + F4 - F)*x + F*L - F5*d5 - F4*d4)/(E*b*h^3), d4 < x and x < d5, 12*((F5 - F)*x + F*L - F5*d5)/(E*b*h^3), 12*F*(L - x)/(E*b*h^3))

eq := diff(Uy(x), x, x)-piecewise(x < 2/3, 0.4571428572e-1*F*x, 2/3 < x and x < 4/3, (0.4571428572e-1*(F+F1))*x-0.3047619048e-1*F1, 4/3 < x and x < 2, (0.4571428572e-1*(F+F1+F2))*x-0.3047619048e-1*F1-0.6095238096e-1*F2, 2 < x and x < 8/3, (0.4571428572e-1*(F5+F4-F))*x+.1828571429*F-.1523809524*F5-.1219047619*F4, 8/3 < x and x < 10/3, (0.4571428572e-1*(F5-F))*x+.1828571429*F-.1523809524*F5, 0.4571428572e-1*F*(4-x))

(1)

dsolve({eq, Uy(0) = 0, Uy(L) = 0}, Uy(x)):
simplify(value(%));

Uy(x) = -(1/50000000000)*piecewise(x <= 2/3, -380952381*F*x^3, x <= 4/3, -380952381*(-2/3+x)^3*F1-380952381*F*x^3, x <= 2, -380952381*(-2/3+x)^3*F1-380952381*(-4/3+x)^3*F2-380952381*F*x^3, x <= 8/3, -(380952381*(x-3047619047/761904762))*(-2+x)^2*F4-(380952381*(x-6))*(-2+x)^2*F5+(1/18)*(6857142858*x^3-82285714305*x^2+164571428628*x-109714285764)*F+(1/18)*(-36571428576*F1-9142857144*F2)*x+28444444448*F1*(1/9)+8126984128*F2*(1/9), x <= 10/3, -(380952381*(x-6))*(-2+x)^2*F5+(1/18)*(6857142858*x^3-82285714305*x^2+164571428628*x-109714285764)*F+(1/18)*(-36571428576*F1-9142857144*F2+9142857132*F4)*x+28444444448*F1*(1/9)+8126984128*F2*(1/9)-1128747794*F4, 10/3 < x, 380952381*F*x^3-4571428572*F*x^2+(1/9)*(82285714284*F-18285714288*F1-4571428572*F2+4571428566*F4+18285714288*F5)*x-54857142832*F*(1/9)+28444444448*F1*(1/9)+8126984128*F2*(1/9)-1128747794*F4-44698412704*F5*(1/9))+(1/900000000000)*(-82285714304*F-22349206352*F1-5079365080*F2+4063492059*F4+14222222224*F5)*x

(2)

 


 

Download odeProb.mw

that vv has confused "focus" and "vertex".

Anyhow for what it is worth, here is another way to get the equation, using the geometry() package

  restart;
  with(geometry):
  with(plots):
  _EnvHorizontalName:= x:
  _EnvVerticalName:= y:
#
# Vertex of parabola
#
  point( vert, [6,-3]):
#
# directrix of parabola
#
  line( dir, x+2*y-1=0, [x,y]):
#
# Compute the focus of the parabola)
#
  PerpendicularLine( axis, vert, dir):
  intersection( P2, dir, axis ):
  point(foc, [ 2*coordinates(vert)[1]-coordinates(P2)[1],
               2*coordinates(vert)[2]-coordinates(P2)[2]
             ]
       ):
#
# Define the parabola in terms of the vertex and focus
#
  parabola( para, [focus=foc, vertex=vert]):
#
# Draw construction and annotation
#
  g:=draw( [ dir(color=red),
             axis(color=blue),
             vert(color=green, symbol=solidcircle, symbolsize=20),
             foc(color=cyan, symbol=solidcircle, symbolsize=20),
             para(color=black)
           ]
         ):
  t:=textplot( [ [coordinates(foc)[], "focus", align=right],
                 [coordinates(vert)[], "vertex", align=right]
               ]
             ):
  display( [g, t]);
#
# Return equation of parabola
#
  Equation(para);

 

9+(4/25)*x^2-(4/25)*x*y+(1/25)*y^2-(56/25)*x+(38/25)*y = 0

(1)

 

 

Download eqpara.mw

 

from the help (emphasis added)

A return statement causes an immediate return to the point where the current procedure was invoked.

The mere idea of "returning" to somewhere else should scare you as much as it scares me!

you have to supply an ODE rather obviously (as the attached shows) you are supply a "simple" equation, not an ODE!

  restart:

  d := 0.0002:
  kappa := 0.4:
  k__s := 2.5*d:
  Um := 3.266825770:
  Tp := 1.62476126:
  omega := 2*Pi/Tp:
  U0 := Um*sin(omega*t):
  U := Uf*ln(30*y/k__s)/kappa:
  delta := solve(Uf*ln(30*delta/k__s)/kappa = U0, delta):
  t0 := 0.001*Tp:
#
# The following is not an ODE!
#
  ODE := diff(int(U, y = 0 .. delta), t) = delta*diff(U0, t) - Uf^2;
 # ICs := Uf(t0) = 0.001*Um;
 # dsn1 := dsolve({ICs, ODE}, Uf(t), numeric);
 

0.2105547463e-3*cos(3.867143725*t)*exp(1.306730308*sin(3.867143725*t)/Uf)*ln(exp(1.306730308*sin(3.867143725*t)/Uf)) = 0.2105547462e-3*exp(1.306730308*sin(3.867143724*t)/Uf)*cos(3.867143724*t)-Uf^2

(1)

 

Download notAnODE.mw

Using a couple of utility functions which facilitate

  1. Plotting both eigenvalues against a supplied variable name (in the set params) over the supplied range
  2. Plotting both eigenvalues against two supplied valiable names (in the set params) over the supplied ranges

See the attached. NB the plots *look* better in the actual worksheet because no grdlines are used - I have no idea why this site insists on entering gridlines when rendering 2D plots!

  restart;

  with(LinearAlgebra):
  A := Matrix( 5, 5,
               [ [0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0],
                 [0, 0, tau*PI__u/mu, 0, 0],
                 [0, 0, 0, 0, 0],
                 [0, 0, 0, 0, varpi*PI__g/mu]
               ]
             ):
  B := Matrix( 5, 5,
               [ [mu, 0, 0, gamma, 0],
                 [0, mu + omega, 0, 0, 0],
                 [0, 0, mu + sigma1, theta, 0],
                 [0, 0, 0, alpha2 + gamma + mu, 0],
                 [0, 0, sigma1 + alpha2, 0, theta]
               ]
             ):
  C := A . (1/B):
  Rank(C):
  evs := Eigenvalues(C):
  eig := op({entries(evs, nolist)} minus {0});
  params := { PI__g = 2.2, PI__u = 3.4, alpha2 = 0.33,
              mu = 0.2041, omega = 0.5, sigma1 = 0.72,
              tau = 0.33, theta = 0.9, varpi = 0.096
            }:
#
# Function which will plot the eigenvalues against
# the supplied variable name
#
  plt2:= (z, zrnge) -> plot( [eval(eig, remove(has, params, z))],
                             z=zrnge,
                             color=[red, blue],
                             title=typeset("Eigenvalues versus ", z),
                             titlefont=[times, bold, 18]
                           ):
  plt3:= (z, zrnge, zz, zzrnge)-> plot3d( [ eval(eig, remove(has, params, {z,zz}))],
                                            z=zrnge,
                                            zz=zzrnge,
                                            color=[red, blue],
                                            title=typeset("Eigenvalues versus ", z, " and ", zz),
                                            titlefont=[times, bold, 18]
                                        ):

tau*PI__u/(mu*(mu+sigma1)), varpi*PI__g/(mu*theta)

(1)

#
# Examples
#
# Plot both eigenvalues against varpi
# over the range 0..5
#
  plt2(varpi, 0..5);
#
# Plot both eigenvalues agains mu
# over the range -5..5
#
  plt2( mu, -5..5);
#
# Plot both eigenvalues in 3D against varpi and mu
# over the ranges varpi=-5..5 and mu=-3..3
#
  plt3( varpi, -5..5, mu, -3..3);

 

 

 

 

 

Download plotEigs.mw

the attached will help.

  restart;
  with(Student[Calculus1]):
  ex:=Limit((x^2 - 81)/(sqrt(x) - 3), x = 9);
  h:=Hint(%);
  Rule[h[1]](%%);
  h:=Hint(%);
  Rule[h](%%);
  h:=Hint(%);
  Rule[h](%%);
  h:=Hint(%);
  Rule[h](%%);
  ShowSteps();

ex := Limit((x^2-81)/(sqrt(x)-3), x = 9)

 

h := [lhopital, x^2-81], [lhopital, 1/(sqrt(x)-3)]

 

Limit((x^2-81)/(sqrt(x)-3), x = 9) = Limit(4*x^(3/2), x = 9)

 

h := [constantmultiple]

 

Limit((x^2-81)/(sqrt(x)-3), x = 9) = 4*(Limit(x^(3/2), x = 9))

 

h := [power]

 

Limit((x^2-81)/(sqrt(x)-3), x = 9) = 4*(Limit(x, x = 9))^(3/2)

 

h := [identity]

 

Limit((x^2-81)/(sqrt(x)-3), x = 9) = 36*sqrt(9)

 

"[[(lim)(x^2-81)/(sqrt(x)-3)],[ ,"=",(lim)4 x^(3/2), [lhopital,x^2-81]],[ ,"=",4 ((lim)x^(3/2)), [constantmultiple]],[ ,"=",4 ((lim)x)^(3/2), [power]],[ ,"=",36 sqrt(9), [identity]]]"

(1)

#
# Use the 'All Steps' button in the pop-up, followed
# by the 'Close' buttom to produce the output displayed below
#
  LimitTutor((x^2 - 81)/(sqrt(x) - 3), x = 9);

"[[(lim)(x^2-81)/(sqrt(x)-3)],[ ,"=",(lim)4 x^(3/2), [lhopital,x^2-81]],[ ,"=",4 ((lim)x^(3/2)), [constantmultiple]],[ ,"=",4 ((lim)x)^(3/2), [power]],[ ,"=",36 sqrt(9), [identity]]]"

 

Limit((x^2-81)/(x^(1/2)-3), x = 9) = 36*9^(1/2)

(2)

 

Download steps.mw

has been reproted before. Unfoirtuantely I can't find the thread.

I did better by exporting the graph ass encapsulated postscript (EPS), then using GIMP to convert the .ps file to pdf - see the image below

The pdf file produced by GIMP is attached below

test2.pdf

using only the information  provided in the question, and some simple Maple manipulations are shown in the attached

And yes, the textbook answer to question 2(c) is incorrect - should be -3 not 3

  restart:
  with(IntegrationTools):
  Given:= [ int(f(x), x=1..4)=7,
            int(f(x), x=1..6)=4,
            int(g(x), x=1..6)=5
          ];

[int(f(x), x = 1 .. 4) = 7, int(f(x), x = 1 .. 6) = 4, int(g(x), x = 1 .. 6) = 5]

(1)

#
# Question a
#
  Ia:= Int( g(x),
            x=4..4
          ):
  Ia = value
       ( int( g(x),
              x=4..4
            )
       );
#
# Question b
#
  Ib:= Int( f(x),
            x=4..1
          ):
  Ib = eval
       ( value(Ib),
         Given
       );
#
# Question c
#
  Ic:= Int(f(x), x=4..6):
  isolate
  ( eval
    ( Split
      ( lhs( Given[2] ),
        4
      )=rhs( Given[2] ),
      Given
    ),
    value(Ic)
  );
#
# Question d
#
  Id:= Int(8*g(x), x=1..6):
  Id = eval
       ( Expand
         ( value(Id)
         ),
         Given
       );
#
# Question e
#
  Ie:= Int( 5+f(x), x=1..6):
  Ie = eval
       ( Expand
         ( value(Ie)
         ),
         Given
       );
#
# Question f
#
  If:= Int(3*f(x)-6*g(x), x=1..6):
  If = eval
       ( Expand
         ( value(If)
         ),
         Given
       );

Int(g(x), x = 4 .. 4) = 0

 

Int(f(x), x = 4 .. 1) = -7

 

int(f(x), x = 4 .. 6) = -3

 

Int(8*g(x), x = 1 .. 6) = 40

 

Int(5+f(x), x = 1 .. 6) = 29

 

Int(3*f(x)-6*g(x), x = 1 .. 6) = -18

(2)

 

Download ints.mw

because there are many ways to solve this problem - and I like alternatives!

  restart;
  with(Student[Precalculus]):
  with(Student[Calculus1]):
  f:= x -> (x^3+9*x^2-9*x-1)/(x^4+1):
  L:= ( x -> rhs(Line(0.5, [x, f(x)])[1]))~( Roots(D(f)(x)=0.5 ) );
  plot( [f(x),L[]],
        x=-10..10,
        color=[red, blue, green, cyan, brown],
        legend=[f(x),L[]]
      );

[.5*x+2.397905593, .5*x+8.699886068, .5*x-3.239253622, .5*x+.7602488505]

 

 

 

Download linees.mw

the attached perhaps?

Be careful!! As  AmirHosein Sadeghimanesh 145 has already noted, the number of such graphs gets very big very quickly as the vertex count goes up  . There are more than 11 million ( actually 11716571 ) such graphs with 10 vertices.

  restart;
  with(GraphTheory):

#
# Return the sequence of the number of non-isomorphic,
# connected graphs with vertices from 1 to 8.
#
# This gives the OEIS sequence st
#
# https://oeis.org/A001349
#
# This number gets very VERY large, very quickly and
# the command becomes very time-consuming for upper
# limits >=10
#
  seq( NonIsomorphicGraphs
       ( j,
         output=count,
         restrictto=connected
       ),
       j=1..9
     );

1, 1, 2, 6, 21, 112, 853, 11117, 261080

(1)

#
# For given number of vertices, generate the set of edges for
# every non-isomorphic graph, storing this result in an Array()
#
  n:= 7;
  L:= NonIsomorphicGraphs
      ( n,
        output=iterator,
        outputform=graph,
        restrictto=connected
      ):
  Es:= Array
       ( [ seq
           (  Edges( L() ),
              j=1..NonIsomorphicGraphs
                   ( n,
                     output=count,
                     restrictto=connected
                   )
           )
         ]
       ):

7

(2)

#
# Check the number of Edge sets and examine a few of these
#
  numelems(Es);
  Es[5];
  Es[67];
  Es[107];
  Es[723];

853

 

{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 6}, {5, 7}}

 

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 6}, {3, 7}, {6, 7}}

 

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 6}, {4, 7}, {5, 7}, {6, 7}}

 

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {2, 3}, {2, 4}, {2, 5}, {3, 6}, {4, 6}}

(3)

 

Download edges.mw

This can easily be done with the following

  restart;
  soln:= y(t) = 1.42*exp(-0.125*t)*sin(1.41*t);
  plot( [ rhs(soln), diff(rhs(soln),t)], t=0..10, color=[red, blue]);

y(t) = 1.42*exp(-.125*t)*sin(1.41*t)

 

 

 

Download doPlot.mw

consider the attached and tell me what (if anything) you have an issue with

NB the display of quantitieis with units is "better" in the Maple worksheet thn ait is on this site - honest!

  restart:
  with(Units[Standard]):

  ang_speed := 1.0*Unit(rad/s);
  Speed1 := 6.0*Unit(mph);

1.0*Units:-Unit(rad/s)

 

6.0*Units:-Unit(mph)

(1)

  C1 := 2*Pi*13.5*Unit(inch);
  RPM1 := Speed1/C1;
  convert(%, units, 1/minute);

84.82300166*Units:-Unit(`in`)

 

1.244945332*Units:-Unit(1/s)

 

74.69671992*Units:-Unit(1/min)

(2)

  C1_1 := 13.5*Unit(inch(radius))*Unit(rev);
  convert(%, units, inch);
  RPM2 := Speed1/C1_1;
  convert(%, units, 1/minute);

2.154504242*Units:-Unit(m)

 

84.82300165*Units:-Unit(`in`)

 

1.244945333*Units:-Unit(1/s)

 

74.69671998*Units:-Unit(1/min)

(3)

 

Download unitsIssue.mw

First 38 39 40 41 42 43 44 Last Page 40 of 207