toran

10 Reputation

3 Badges

1 years, 223 days

MaplePrimes Activity


These are questions asked by toran

I'm having a symmetric bivariate polynomial P(x,y) with a high degree (larger than 8). I want to know if there exists a root of P(x,y) or not. I may not need a specific root but rather to know if P(x,y) has a root or not. I've been doing some research but I only find the command that helps solve univariate functions or solve systems of bivariate functions. 

In conclusion, my question is: How can I know that a symmetric bivariate polynomial has a root or not using Maple?

Here is the polynomial I want to check

P(x,y)=x^12*y^3 + 10*x^11*y^4 + 43*x^10*y^5 + 105*x^9*y^6 + 161*x^8*y^7 + 161*x^7*y^8 + 105*x^6*y^9 + 43*x^5*y^10 + 10*x^4*y^11 + x^3*y^12 - x^12*y^2 - 8*x^11*y^3 - 17*x^10*y^4 + 8*x^9*y^5 + 82*x^8*y^6 + 128*x^7*y^7 + 82*x^6*y^8 + 8*x^5*y^9 - 17*x^4*y^10 - 8*x^3*y^11 - x^2*y^12 - x^12*y - 4*x^11*y^2 - 62*x^10*y^3 - 341*x^9*y^4 - 902*x^8*y^5 - 1410*x^7*y^6 - 1410*x^6*y^7 - 902*x^5*y^8 - 341*x^4*y^9 - 62*x^3*y^10 - 4*x^2*y^11 - x*y^12 + x^12 - 8*x^11*y - 62*x^10*y^2 - 680*x^9*y^3 - 3169*x^8*y^4 - 7312*x^7*y^5 - 9540*x^6*y^6 - 7312*x^5*y^7 - 3169*x^4*y^8 - 680*x^3*y^9 - 62*x^2*y^10 - 8*x*y^11 + y^12 + 10*x^11 - 17*x^10*y - 341*x^9*y^2 - 3169*x^8*y^3 - 11838*x^7*y^4 - 21793*x^6*y^5 - 21793*x^5*y^6 - 11838*x^4*y^7 - 3169*x^3*y^8 - 341*x^2*y^9 - 17*x*y^10 + 10*y^11 + 43*x^10 + 8*x^9*y - 902*x^8*y^2 - 7312*x^7*y^3 - 21793*x^6*y^4 - 30696*x^5*y^5 - 21793*x^4*y^6 - 7312*x^3*y^7 - 902*x^2*y^8 + 8*x*y^9 + 43*y^10 + 105*x^9 + 82*x^8*y - 1410*x^7*y^2 - 9540*x^6*y^3 - 21793*x^5*y^4 - 21793*x^4*y^5 - 9540*x^3*y^6 - 1410*x^2*y^7 + 82*x*y^8 + 105*y^9 + 161*x^8 + 128*x^7*y - 1410*x^6*y^2 - 7312*x^5*y^3 - 11838*x^4*y^4 - 7312*x^3*y^5 - 1410*x^2*y^6 + 128*x*y^7 + 161*y^8 + 161*x^7 + 82*x^6*y - 902*x^5*y^2 - 3169*x^4*y^3 - 3169*x^3*y^4 - 902*x^2*y^5 + 82*x*y^6 + 161*y^7 + 105*x^6 + 8*x^5*y - 341*x^4*y^2 - 680*x^3*y^3 - 341*x^2*y^4 + 8*x*y^5 + 105*y^6 + 43*x^5 - 17*x^4*y - 62*x^3*y^2 - 62*x^2*y^3 - 17*x*y^4 + 43*y^5 + 10*x^4 - 8*x^3*y - 4*x^2*y^2 - 8*x*y^3 + 10*y^4 + x^3 - x^2*y - x*y^2 + y^3

How can I change the order of variables in a polynomial as I want? For example, I want to assign a polynomial G of 3 variables a,b,c. Then I want to compute G(a,b,c) (exchange the variable a to b, exchange variable b to a)?

Page 1 of 1