vv

13832 Reputation

20 Badges

9 years, 317 days

MaplePrimes Activity


These are answers submitted by vv

with(Statistics):

X1 := RandomVariable(Uniform(0,1)): X2 := RandomVariable(Uniform(0,1)):
Y1 := RandomVariable(Uniform(0,1)): Y2 := RandomVariable(Uniform(0,1)):
Dist := sqrt((X1-X2)^2+(Y1-Y2)^2):

f := simplify(PDF(Dist, t));
F := simplify(CDF(Dist, t));

f := -2*t*piecewise(t <= 0, 0, t <= 1, -t^2-Pi+4*t, t <= sqrt(2), (sqrt(t^2-1)*t^2+2*sqrt(t^2-1)*arcsin((t^2-2)/t^2)-4*t^2+2*sqrt(t^2-1)+4)/sqrt(t^2-1), sqrt(2) < t, 0)

 

(1/6)*piecewise(t <= 0, 0, t <= 1, t^2*(3*t^2+6*Pi-16*t), t < 2^(1/2), -12*t^2*arcsin((t^2-2)/t^2)+((-3*t^4-12*t^2+2)*(t^2-1)^(1/2)+16*t^4-8*t^2-8)/(t^2-1)^(1/2), 2^(1/2) <= t, 6)

(1)

plot([f,F], t=0..3);

 

 

Distribution function for the distance between two uniformly distributed random points in the unit square

restart;

 

The density for |x-y|^2 in the unit interval

 

int(piecewise( (x-y)^2<t, 1, 0), [x=0..1,y=0..1]) assuming t>0:

f1 := unapply(simplify(diff(%, t)), t) assuming t>0;

f1 := proc (t) options operator, arrow; piecewise(t <= 1, -(sqrt(t)-1)/sqrt(t), 1 < t, 0) end proc

(1)

 

The density for ||x-y||^2 in the unit square

 

simplify(int( f1(s)*f1(t-s),s=0..t)) assuming t>0:
f2:=unapply(piecewise(t>0,%,0), t);

f2 := proc (t) options operator, arrow; piecewise(0 < t, piecewise(t < 1, Pi-4*sqrt(t)+t, t < 2, -t+4*sqrt(t-1)-2*arcsin((-2+t)/t)-2, 2 <= t, 0), 0) end proc

(2)

 

The cdf for ||x-y||^2  in the unit square

 

simplify(int(f2(s), s=0..t)) assuming t>0:
F2:= unapply(%, t);

F2 := proc (t) options operator, arrow; (1/6)*piecewise(t < 1, -16*t^(3/2)+6*t*Pi+3*t^2, t < 2, -12*arcsin((-2+t)/t)*t+(16*t+8)*sqrt(t-1)-3*t^2-12*t+2, 2 <= t, 6) end proc

(3)

 

The cdf and pdf  for  ||x-y|| in the unit square

 

simplify(F2(t^2)) assuming t>0:
F := unapply(%, t) assuming t>0;
simplify( diff(F2(t^2),t) ) assuming t>0:
f:=unapply(%, t);

F := proc (t) options operator, arrow; (1/6)*piecewise(t < 1, t^2*(3*t^2+6*Pi-16*t), t < sqrt(2), -3*t^4-12*arcsin((t^2-2)/t^2)*t^2+16*sqrt(t^2-1)*t^2-12*t^2+8*sqrt(t^2-1)+2, sqrt(2) <= t, 6) end proc

 

proc (t) options operator, arrow; -2*t*piecewise(t <= 1, -t^2-Pi+4*t, t <= 2^(1/2), ((t^2-1)^(1/2)*t^2+2*arcsin((t^2-2)/t^2)*(t^2-1)^(1/2)-4*t^2+2*(t^2-1)^(1/2)+4)/(t^2-1)^(1/2), 2^(1/2) < t, 0) end proc

(4)

plot(f, 0..2, title="pdf for the distance between 2 points in I^2");

 

plot(F, 0..3, title="cdf for the distance between 2 points in I^2");

 

Note. Unfortunately Maple 2020 fails in computing the quadruple integral needed for a direct solution.

Download dist-points-vv.mw

You forgot a multiplication sign * after omega__n
expand(EXPR)
works without any assumption.

Just use the Constraints to eliminate variables.

restart:
local gamma:

SYS := dlogR[i, r] = sum(sum(rho[j, u]*pi[i, j, r, F]*(-epsilon[r]*sum(pi[k, j, r, F]*((dlogR[i, r] - dlogR[k, r]) + (-`dlog&delta;`[i, r] + `dlog&delta;`[k, r])), k = 1 .. J) + dlogR[j, u]), u = 1 .. S), j = 1 .. J)/rho[i, r];

dlogR[i, r] = (sum(sum(rho[j, u]*pi[i, j, r, F]*(-epsilon[r]*(sum(pi[k, j, r, F]*(dlogR[i, r]-dlogR[k, r]-`dlog&delta;`[i, r]+`dlog&delta;`[k, r]), k = 1 .. J))+dlogR[j, u]), u = 1 .. S), j = 1 .. J))/rho[i, r]

(1)

EQ:=[seq( eval(SYS, [J = 3, S = 1,r = 1]), i=1..3)]:

indets(EQ):

X:=select( u -> evalb(convert(u,string)[1..5]="dlogR"), %);

{dlogR[1, 1], dlogR[2, 1], dlogR[3, 1]}

(2)

Cons := {seq(seq(add(pi[i, j, r, F], i = 1..3) = 1, j = 1..3), r = 1..1)}

{pi[1, 1, 1, F]+pi[2, 1, 1, F]+pi[3, 1, 1, F] = 1, pi[1, 2, 1, F]+pi[2, 2, 1, F]+pi[3, 2, 1, F] = 1, pi[1, 3, 1, F]+pi[2, 3, 1, F]+pi[3, 3, 1, F] = 1}

(3)

CONS:= solve(Cons, select(u -> (op(1,u)=3),  indets(Cons)));

{pi[3, 1, 1, F] = -pi[1, 1, 1, F]-pi[2, 1, 1, F]+1, pi[3, 2, 1, F] = -pi[1, 2, 1, F]-pi[2, 2, 1, F]+1, pi[3, 3, 1, F] = -pi[1, 3, 1, F]-pi[2, 3, 1, F]+1}

(4)

EQIND:=eval(EQ,CONS):

SOL:=simplify(solve(EQIND,X)):

SOL[1]; SOL[2]; SOL[3];

dlogR[1, 1] = ((`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[2, 2, 1, F]*pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2+(((-pi[2, 1, 1, F]^2+pi[2, 1, 1, F])*pi[1, 2, 1, F]^2+(2*pi[1, 1, 1, F]*pi[2, 1, 1, F]*pi[2, 2, 1, F]+pi[2, 1, 1, F]^2-pi[2, 1, 1, F])*pi[1, 2, 1, F]-pi[2, 2, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1]-((pi[2, 3, 1, F]^2-pi[2, 3, 1, F])*pi[1, 2, 1, F]^2+(-2*pi[1, 3, 1, F]*pi[2, 2, 1, F]*pi[2, 3, 1, F]-pi[2, 3, 1, F]^2+pi[2, 3, 1, F])*pi[1, 2, 1, F]+pi[2, 2, 1, F]*pi[1, 3, 1, F]*(pi[1, 3, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[3, 1])*rho[2, 1]+pi[1, 1, 1, F]*pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2-rho[3, 1]*((pi[2, 3, 1, F]^2-pi[2, 3, 1, F])*pi[1, 1, 1, F]^2-pi[2, 3, 1, F]*(2*pi[1, 3, 1, F]*pi[2, 1, 1, F]+pi[2, 3, 1, F]-1)*pi[1, 1, 1, F]+pi[2, 1, 1, F]*pi[1, 3, 1, F]*(pi[2, 1, 1, F]-1)*(pi[1, 3, 1, F]-1))*rho[1, 1]+pi[2, 3, 1, F]*rho[3, 1]^2*pi[1, 3, 1, F]*(pi[2, 3, 1, F]+pi[1, 3, 1, F]-1))*epsilon[1]^2+(pi[1, 2, 1, F]*(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2+((pi[2, 1, 1, F]*((`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[1, 1, 1, F]+(pi[2, 1, 1, F]-1)*(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1]))*pi[1, 2, 1, F]-((`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[1, 1, 1, F]+(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 1, 1, F]-`dlog&delta;`[1, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1])*(pi[2, 2, 1, F]-1)*pi[1, 1, 1, F])*rho[1, 1]+(-(pi[2, 2, 1, F]*dlogR[3, 1]+(-`dlog&delta;`[1, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1])*pi[1, 3, 1, F]-(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[2, 3, 1, F]-1))*pi[2, 3, 1, F]*pi[1, 2, 1, F]+(pi[2, 2, 1, F]*dlogR[3, 1]+(-`dlog&delta;`[1, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1])*pi[1, 3, 1, F]+(-`dlog&delta;`[2, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1])*pi[2, 3, 1, F]+`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[2, 2, 1, F]-1)*pi[1, 3, 1, F])*rho[3, 1])*rho[2, 1]-(pi[2, 1, 1, F]*(pi[2, 3, 1, F]*pi[1, 1, 1, F]-pi[1, 3, 1, F]*(pi[2, 1, 1, F]-1))*rho[1, 1]+pi[2, 3, 1, F]*rho[3, 1]*pi[1, 3, 1, F])*dlogR[3, 1]*rho[3, 1])*epsilon[1]+rho[2, 1]*dlogR[3, 1]*(-pi[2, 3, 1, F]*pi[1, 2, 1, F]+pi[1, 3, 1, F]*(pi[2, 2, 1, F]-1))*rho[3, 1])/((pi[2, 2, 1, F]*pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2+(((-pi[2, 1, 1, F]^2+pi[2, 1, 1, F])*pi[1, 2, 1, F]^2+(2*pi[1, 1, 1, F]*pi[2, 1, 1, F]*pi[2, 2, 1, F]+pi[2, 1, 1, F]^2-pi[2, 1, 1, F])*pi[1, 2, 1, F]-pi[2, 2, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1]-((pi[2, 3, 1, F]^2-pi[2, 3, 1, F])*pi[1, 2, 1, F]^2+(-2*pi[1, 3, 1, F]*pi[2, 2, 1, F]*pi[2, 3, 1, F]-pi[2, 3, 1, F]^2+pi[2, 3, 1, F])*pi[1, 2, 1, F]+pi[2, 2, 1, F]*pi[1, 3, 1, F]*(pi[1, 3, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[3, 1])*rho[2, 1]+pi[1, 1, 1, F]*pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2-rho[3, 1]*((pi[2, 3, 1, F]^2-pi[2, 3, 1, F])*pi[1, 1, 1, F]^2-pi[2, 3, 1, F]*(2*pi[1, 3, 1, F]*pi[2, 1, 1, F]+pi[2, 3, 1, F]-1)*pi[1, 1, 1, F]+pi[2, 1, 1, F]*pi[1, 3, 1, F]*(pi[2, 1, 1, F]-1)*(pi[1, 3, 1, F]-1))*rho[1, 1]+pi[2, 3, 1, F]*rho[3, 1]^2*pi[1, 3, 1, F]*(pi[2, 3, 1, F]+pi[1, 3, 1, F]-1))*epsilon[1]^2+(pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2+(-(pi[2, 2, 1, F]+pi[1, 1, 1, F])*(-pi[1, 2, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1]-(-pi[2, 3, 1, F]*pi[1, 2, 1, F]+(pi[1, 3, 1, F]-1)*(pi[2, 2, 1, F]-1))*pi[1, 3, 1, F]*rho[3, 1])*rho[2, 1]+(pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]-pi[2, 3, 1, F]*((pi[2, 3, 1, F]-1)*pi[1, 1, 1, F]-pi[1, 3, 1, F]*pi[2, 1, 1, F]-pi[2, 3, 1, F]+1)*rho[3, 1])*rho[1, 1])*epsilon[1]-rho[2, 1]*(-pi[1, 2, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1])

 

dlogR[2, 1] = ((`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[1, 1, 1, F]*pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2+(((-pi[1, 2, 1, F]^2+pi[1, 2, 1, F])*pi[2, 1, 1, F]^2+(2*pi[1, 1, 1, F]*pi[1, 2, 1, F]*pi[2, 2, 1, F]+pi[1, 2, 1, F]^2-pi[1, 2, 1, F])*pi[2, 1, 1, F]-pi[2, 2, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[2, 1]-rho[3, 1]*((pi[1, 3, 1, F]^2-pi[1, 3, 1, F])*pi[2, 1, 1, F]^2+(-2*pi[1, 1, 1, F]*pi[1, 3, 1, F]*pi[2, 3, 1, F]-pi[1, 3, 1, F]^2+pi[1, 3, 1, F])*pi[2, 1, 1, F]+pi[2, 3, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 3, 1, F]-1)))*rho[1, 1]+pi[2, 2, 1, F]*pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2-((pi[1, 3, 1, F]^2-pi[1, 3, 1, F])*pi[2, 2, 1, F]^2+(-2*pi[1, 2, 1, F]*pi[1, 3, 1, F]*pi[2, 3, 1, F]-pi[1, 3, 1, F]^2+pi[1, 3, 1, F])*pi[2, 2, 1, F]+pi[2, 3, 1, F]*pi[1, 2, 1, F]*(pi[1, 2, 1, F]-1)*(pi[2, 3, 1, F]-1))*rho[3, 1]*rho[2, 1]+pi[2, 3, 1, F]*rho[3, 1]^2*pi[1, 3, 1, F]*(pi[2, 3, 1, F]+pi[1, 3, 1, F]-1))*epsilon[1]^2+(pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*rho[1, 1]^2+((pi[1, 2, 1, F]*((`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 2, 1, F]+(pi[1, 2, 1, F]-1)*(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1]))*pi[2, 1, 1, F]-(pi[1, 1, 1, F]-1)*pi[2, 2, 1, F]*((`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 2, 1, F]+(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[1, 2, 1, F]-`dlog&delta;`[2, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1]))*rho[2, 1]-(-pi[1, 3, 1, F]*(-pi[1, 1, 1, F]*dlogR[3, 1]+(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 3, 1, F]+(pi[1, 3, 1, F]-1)*(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1]))*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*pi[2, 3, 1, F]*(-pi[1, 1, 1, F]*dlogR[3, 1]+(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 3, 1, F]+(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[1, 3, 1, F]-`dlog&delta;`[2, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1]))*rho[3, 1])*rho[1, 1]-((pi[1, 3, 1, F]*pi[2, 2, 1, F]-pi[2, 3, 1, F]*(pi[1, 2, 1, F]-1))*pi[1, 2, 1, F]*rho[2, 1]+pi[2, 3, 1, F]*rho[3, 1]*pi[1, 3, 1, F])*dlogR[3, 1]*rho[3, 1])*epsilon[1]+(-pi[1, 3, 1, F]*pi[2, 1, 1, F]+pi[2, 3, 1, F]*(pi[1, 1, 1, F]-1))*dlogR[3, 1]*rho[1, 1]*rho[3, 1])/((pi[1, 1, 1, F]*pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2+(((-pi[1, 2, 1, F]^2+pi[1, 2, 1, F])*pi[2, 1, 1, F]^2+(2*pi[1, 1, 1, F]*pi[1, 2, 1, F]*pi[2, 2, 1, F]+pi[1, 2, 1, F]^2-pi[1, 2, 1, F])*pi[2, 1, 1, F]-pi[2, 2, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[2, 1]-rho[3, 1]*((pi[1, 3, 1, F]^2-pi[1, 3, 1, F])*pi[2, 1, 1, F]^2+(-2*pi[1, 1, 1, F]*pi[1, 3, 1, F]*pi[2, 3, 1, F]-pi[1, 3, 1, F]^2+pi[1, 3, 1, F])*pi[2, 1, 1, F]+pi[2, 3, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 3, 1, F]-1)))*rho[1, 1]+pi[2, 2, 1, F]*pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2-((pi[1, 3, 1, F]^2-pi[1, 3, 1, F])*pi[2, 2, 1, F]^2+(-2*pi[1, 2, 1, F]*pi[1, 3, 1, F]*pi[2, 3, 1, F]-pi[1, 3, 1, F]^2+pi[1, 3, 1, F])*pi[2, 2, 1, F]+pi[2, 3, 1, F]*pi[1, 2, 1, F]*(pi[1, 2, 1, F]-1)*(pi[2, 3, 1, F]-1))*rho[3, 1]*rho[2, 1]+pi[2, 3, 1, F]*rho[3, 1]^2*pi[1, 3, 1, F]*(pi[2, 3, 1, F]+pi[1, 3, 1, F]-1))*epsilon[1]^2+(pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2+(-(pi[2, 2, 1, F]+pi[1, 1, 1, F])*(-pi[1, 2, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[2, 1]-pi[2, 3, 1, F]*(-pi[1, 3, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 3, 1, F]-1))*rho[3, 1])*rho[1, 1]+(pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]-((pi[1, 3, 1, F]-1)*pi[2, 2, 1, F]-pi[2, 3, 1, F]*pi[1, 2, 1, F]-pi[1, 3, 1, F]+1)*pi[1, 3, 1, F]*rho[3, 1])*rho[2, 1])*epsilon[1]-rho[2, 1]*(-pi[1, 2, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1])

 

dlogR[3, 1] = dlogR[3, 1]

(5)

 

``

Download Example-vv.mw

# The bug looks severe to me. In Maple 2018 it is OK. 2019?
restart;
fname:= "atest.txt":
for i from 95 to 120 do
  a := 10^i + 13;   aok:=a;
  save a, fname;    read(fname);
  lprint('i'=i, filesize = FileTools:-Size(fname), OK=evalb(a=aok))
od:
# Correct only for i <= 96  (!?)

i = 95, filesize = 107, OK = true
i = 96, filesize = 108, OK = true
i = 97, filesize = 93, OK = false
i = 98, filesize = 94, OK = false
i = 99, filesize = 95, OK = false
i = 100, filesize = 96, OK = false
i = 101, filesize = 97, OK = false
i = 102, filesize = 98, OK = false
i = 103, filesize = 99, OK = false
i = 104, filesize = 100, OK = false
i = 105, filesize = 101, OK = false
i = 106, filesize = 102, OK = false
i = 107, filesize = 103, OK = false
i = 108, filesize = 104, OK = false
i = 109, filesize = 105, OK = false
i = 110, filesize = 106, OK = false
i = 111, filesize = 107, OK = false
i = 112, filesize = 108, OK = false
i = 113, filesize = 109, OK = false
i = 114, filesize = 110, OK = false
i = 115, filesize = 111, OK = false

i = 116, filesize = 93, OK = false
i = 117, filesize = 94, OK = false
i = 118, filesize = 95, OK = false
i = 119, filesize = 96, OK = false
i = 120, filesize = 97, OK = false

Edit. Same for floats! Try:  Digits:=200 and a:=10^i + 13.0

P:=proc(p,x,y)
  local pp:=expand(p), ld:=ldegree(pp,{x,y}), a:=floor(ld/2), b:=ld-a;
  coeff(coeff(pp,x,a),y,b)*x^a*y^b
end proc;

P(13*x^2*y^2 + x*y^2 + 2*y*x^2,x,y) # x*y^2
P(100*x^2*y^2 + 35*y*x + 45*x,x,y)   # 0

The double integral diverges.
I have supposed that Dgamma = D(gamma), Dphi = D(phi).
(Use gamma1 instead of gamma = used by Maple.) 
 

g(a) = piecewise(a < 0, 1/4*2^(1/2)*(a^2)^(1/4)*exp(-1/2*a^2)*BesselK(1/4,1/2*a^2),
-1/2*Pi^(1/2)*2^(1/4)*exp(-1/2*a^2)*(2^(1/2)*CylinderD(3/2,-2^(1/2)*a)+
2*a*CylinderD(1/2,-2^(1/2)*a)));

 

Note that actually the second branch is valid for a<0 too!

with(LinearAlgebra):

A:=RandomMatrix(4, generator=(()->randpoly(x, degree=1)));

Matrix(4, 4, {(1, 1) = -27*x+65, (1, 2) = 88*x+10, (1, 3) = -6*x+80, (1, 4) = -84*x+57, (2, 1) = -49*x+31, (2, 2) = 73*x+95, (2, 3) = 68*x-29, (2, 4) = 5*x-26, (3, 1) = -51*x+88, (3, 2) = 97*x-67, (3, 3) = 58*x+29, (3, 4) = 37*x+5, (4, 1) = -36*x-57, (4, 2) = 85*x+80, (4, 3) = 90*x+74, (4, 4) = 27*x+9})

(1)

f:=unapply('Determinant'(A), x):

fsolve(f, -5..5);

-.8230972093

(2)

fsolve(f(x), x, complex)

HFloat(-0.8230972092886379), HFloat(0.47998410600004493), HFloat(3.0828436546763673)-HFloat(2.183514741277015)*I, HFloat(3.0828436546763673)+HFloat(2.183514741277015)*I

(3)

#solve(f(x), x, explicit)

 

 

Windows:

src:=cat(kernelopts(mapledir), "\\samples"):
dest:="D:\\tmp\\samples\\":
system( cat("xcopy \"", src, "\" ", dest, " /E") );

 

No, if   f := y z x + exp(x) cos(y) + g(y, z)
your ff is not correct.

IntWithConst:=proc(f::algebraic, x::name, C::name:=_F)
  local u:=indets(f, And(name, Not(constant))) minus {x};
  int(f, x) + C(u[])
end:

A := exp(x)*cos(y) + y*z:

f:=IntWithConst(A, x);
       
f := y*z*x + exp(x)*cos(y) + _F(y, z)

diff(f,y);
      
z*x - exp(x)*sin(y) + diff(_F(y, z), y)

 

The principle is simple: if diff(f(x,y), x) = 0 then f(x,y) is constant with respect to x, which means that f(x,y) depends only on y, i.e. f(x,y) = g(y).

If you want to see this in Maple:

pdsolve( diff(f(x,y), x) = 0, f(x,y) );

         f(x, y) = _F1(y)

Actually, the fact is true only locally: in a non-convex domain, f(x,y) could depend on x (!). Maths is difficult...

So, you want a partial fraction form. Unfortunately Maple does it only for rational expressions and a substitution is needed.

S:=sqrt(N__s):
subs(x=S, convert(subs(S=x,S^2=x^2, ex1), parfrac));

 

 

 

 

The standard plot is over a rectangle (i.e. the xy projection is a rectangle).

plot3d(4*x^2+9*y^2, x=-5..5, y=-4..4);

 

You probably want an ellipse, obtained by cutting the paraboloid by an horizontal plane.

solve(4*x^2+9*y^2<=100,[x,y])

[[x <= 5, -5 <= x, y <= (2/3)*(-x^2+25)^(1/2), -(2/3)*(-x^2+25)^(1/2) <= y]]

(1)

plot3d(4*x^2+9*y^2, x=-5..5, y=-(2*sqrt(-x^2 + 25))/3..(2*sqrt(-x^2 + 25))/3)

 

 

A simpler method is to use the view option

plot3d(4*x^2+9*y^2, x=-5..5, y=-5..5, view=0..100);

 

The loci are two circles centered at B and C.

(The geometry package cannot be used generally for such problems; they must be solved directly.)


 

restart;

A triangle ABC with fixed B and C vertices is considered in the plane, A being variable so that AB+AC remains constant and equal to a given length L.
We call P, T, T1  the points of contact of the excircle in the angle B with the sides BC, AB and AC respectively.
Show that P is fixed and is a vertex of the ellipse described by point A.

What are the locus of T and T1? How to animate the drawing when A move ? Thank you.

 

The equation of the ellipse is x^2/p^2 + y^2/q&2 = 1 (0<q<p);   f is the focal length
a,b,c are the sides of the triangle ABC.

 

c:=p+u*f/p:
b:=p-u*f/p:
a:=2*f:

A:=[u,v]:
B:=[-f,0]:
C:=[f,0]:

PC:=(a+b+c)/2-a:

PO=f+PC;

PO = p

(1)

# ==> P is a vertex

P:=[p,0]:

PB:=p+f:

T:=B+(A-B) *~ (PB/c):

[x,y]-simplify(T):

elim:=eliminate([%[], u^2/p^2+v^2/q^2-1, f^2=p^2-q^2], [u,v]);

[{u = p*(f^2-p*x)/(f^2-f*p+f*x-p^2), v = y*(f^2-p^2)/(f^2-f*p+f*x-p^2)}, {f^2-p^2+q^2, f^2*y^2+2*f*p*q^2-2*f*q^2*x+p^2*q^2-p^2*y^2-q^2*x^2}]

(2)

eqT:=simplify(elim[2][2], [f^2=p^2-q^2]);

q^2*(2*f*p-2*f*x+p^2-x^2-y^2)

(3)

Student:-Precalculus:-CompleteSquare(eqT,{x,y});

-q^2*y^2-q^2*(x+f)^2+q^2*(2*f*p+p^2)+f^2*q^2

(4)

 ==>  The locus of T is a circle having the center at B.

 

T1:=C+(A-C) *~ (PC/b):

[x,y]-simplify(T1):

elim1:=eliminate([%[], u^2/p^2+v^2/q^2-1, f^2=p^2-q^2], [u,v]);

[{u = p*(f^2-p*x)/(f^2+f*p-f*x-p^2), v = y*(f^2-p^2)/(f^2+f*p-f*x-p^2)}, {f^2-p^2+q^2, f^2*y^2-2*f*p*q^2+2*f*q^2*x+p^2*q^2-p^2*y^2-q^2*x^2}]

(5)

eqT1:=simplify(elim1[2][2], [f^2=p^2-q^2]);

-q^2*(2*f*p-2*f*x-p^2+x^2+y^2)

(6)

Student:-Precalculus:-CompleteSquare(eqT1,{x,y});

-q^2*y^2-q^2*(x-f)^2-q^2*(2*f*p-p^2)+f^2*q^2

(7)

==> The locus of T1 is a circle having the center at C.

##### Plot ####

p:=5;q:=3;f:=4;
v:=solve(u^2/p^2+vv^2/q^2-1,vv)[1]:

5

 

3

 

4

(8)

pp:=proc(u_)
global u; uses plots;
u:=u_;
display(
  plot([A,B,C,A]),
  plot([T,T1,P], style=point, color=blue, symbolsize=20),
  implicitplot(x^2/p^2+y^2/q^2-1, x=-10..10, y=-10..10, color=pink),
  implicitplot(eqT,  x=-20..10, y=-1..10, color=green),
  implicitplot(eqT1, x=-20..10, y=-1..10, color=blue),
  scaling=constrained, view=[-15..6, 0..10]
) end proc:

Explore(pp(u_), u_=-p*1.0 .. p)

 

 


 

 

 

Download geom-loci-ellipse-circles.mw

First 35 36 37 38 39 40 41 Last Page 37 of 120