vv

13922 Reputation

20 Badges

10 years, 10 days

MaplePrimes Activity


These are answers submitted by vv

You are not allowed to expand like this. Actually the double sum, triple sum etc are all infinite, so the "resulting series" would be 1 - oo + oo - oo +  ...

As shown in another answer the product is "telescoping", hence easy to compute.
For other situations one may use the fact that for 0 < a(n)<1,
product(1 - a(n), n=1..infinity) = 0   iff   sum(a(n), n=1..infinity) = infinity. 

There is probably a copy&paste problem: args(k) should be args[k]
(or better  l := [args]).

You also have a syntax error in f()  [a ":" after proc()  not accepted in 1d].

But the main problem is that Object||n  are global symbols not the same with your local Object1,...

 

sys:=
[3*v^2-v*t*(v^2+3)-3*w^2+w*t*(w^2+3),v*(p*v^2+3)/(3*v^2+1)-w*(p*w^2+3)/(3*w^2+1),2*t-v*(p*v^2+3)/(3*v^2+1)-w*(p*w^2+3)/(3*w^2+1)]:
S:=unapply(sys,t):
P:=t -> eval(p,fsolve(S(t))):
plot(P, 0..2);

SolveTools:-SemiAlgebraic and some other commands in SolveTools (which are called by solve for inequalities) do not like infinity (==> errors).  Actually infinity is never needed here.

Edit. Here is a short procedure to remove the useless infinities:

CleanInfty:=proc(L::{list,set}(relation))
map(
  proc(r) local u; 
    if not has(r,infinity) then return r fi;
    u:=eval( r, (indets(r)=~0) );
    if is(u) then u:=NULL else u:=0<0 fi;
  end, L)
end;

Example:

S:={x<>10, -infinity<x , x<infinity, -infinity<y, y<infinity, x>-2}:
solve(CleanInfty(S), {x,y});
#SolveTools:-SemiAlgebraic(S,{x,y});

      {y = y, 10 < x},  {y = y, -2 < x, x < 10}

 

int((1-(-1)^floor(u))/(2*u^2), u = 1 .. X) assuming X>3:
limit(%, X=infinity);

          ln(2)

binomial(m,k)*a^(m-k)

The numerical integration routine for

 

is fooled by the fact that the integrand is 0 in the intervals [2k, 2k+1)  and stops the summation too early.


 

When you approximate a function using a series expansion you must consider
1. The order of the expansion
2. The precision needed for the wanted accuracy.

 

You cannot choose these elements at random!

   

restart;

f:=(Z,r,p,n,i) ->
hypergeom([3/2-n-2*i, 1/2], [3/2], Z^2/(Z^2+p^2+r^2)); #Z := 10; r := 4,  p=-2..2, n=3, i=0..infinity

proc (Z, r, p, n, i) options operator, arrow; hypergeom([3/2-n-2*i, 1/2], [3/2], Z^2/(Z^2+p^2+r^2)) end proc

(1)

g:=(Z,r,p,n,i,qmax) ->    # approx for f
Sum(pochhammer(3/2-n-2*i, q)*(Z^2)^q/(factorial(q)*(1+2*q)*(Z^2+p^2+r^2)^q), q = 0 .. qmax);

proc (Z, r, p, n, i, qmax) options operator, arrow; Sum(pochhammer(3/2-n-2*i, q)*(Z^2)^q/(factorial(q)*(1+2*q)*(Z^2+p^2+r^2)^q), q = 0 .. qmax) end proc

(2)

f(10,4,1,3,10):   evalf[20](%);
g(10,4,1,3,10,30):evalf[20](%);

.20321659074231552810

 

.20321659074213582777

(3)

f(10,4,1,3,15):   evalf[20](%);
g(10,4,1,3,15,30):evalf[20](%);

.16879768595171717449

 

.16956416260616846521

(4)

f(10,4,1,3,25):   evalf[20](%);
g(10,4,1,3,25,30):evalf[20](%);

.13261487452222538864

 

9676581243.0583101579

(5)

f(10,4,1,3,25):   evalf[20](%);
g(10,4,1,3,25,50):evalf[10](%);

.13261487452222538864

 

.2753062248

(6)

f(10,4,1,3,25):   evalf[20](%);
g(10,4,1,3,25,50):evalf[20](%);

.13261487452222538864

 

.13264090926789665225

(7)

 

 

map(min, M, 20);

or maybe

map[inplace](min, M, 20);

 

You have used distinct strange names in the two files:

`#mover(mi("&Xi;"),mo("&uminus0;"))`
and
`#mover(mi("&Xi;",fontstyle = "normal"),mo("&uminus0;"))`;

I'd suggest to avoid in the future such names in files (you cannot see them properly in 2d input!).
The fix is simple:
 

restart;
read "sai.m";
`#mover(mi("&Xi;"),mo("&uminus0;"))`:
`#mover(mi("&Xi;",fontstyle = "normal"),mo("&uminus0;"))`:=%:
read "TKtm.m";
TKtm;

      0.106923339809255e-6*(diff(tau[1](t), t))^2

printlevel := 2; 
Equation := 4;
for i from 0 to Equation do 
for j from 0 to Equation do 
  C[i,j]:=coeff(coeff(H1,x,i),y,j)
end do end do;

 

The documentation says (see ?_):

Any symbol beginning with an underscore (_) is effectively reserved for use only by library code. It is not available to users. Failure to observe this rule can lead to unexpected results.

p:=2*yd[0]*k[a1]*k[d1]*ya[1]+(alpha*C[T]*k[a1]*k[m]-alpha*R[b]*k[a1]*k[d1]-alpha*R[m]*k[a1]*k[d1]-alpha*k[d1]*k[m])*ya[1]-2*k[a1]*k[d1]*yd[1]*yd[0]+(-alpha*C[T]*k[a1]*k[m]+alpha*R[b]*k[a1]*k[d1]+alpha*R[m]*k[a1]*k[d1]+alpha*k[d1]*k[m])*yd[1]:

sort([coeffs(p, indets(p, {ya[integer],yd[integer]}))], length)[1];

 

P:=[
y[a0]-y[d0],
k[d1]*y[a1]-k[d2]*y[d2],
k[d1]*y[a1]*x[1]-k[d2]*y[d2]*x[2]
]:

remove(has, subsindets(P, specindex(integer,x), _XX), _XX);

You should be aware that

plot(f(x), x=a..b, coords = logarithmic);

is equivalent to

plot( [ln(f(x)^2+x^2)/Pi, 2*arctan(x/f(x))/Pi, x=a..b]);

So, use coords = ...  only if you know exactly what it means.

 

 

First 67 68 69 70 71 72 73 Last Page 69 of 120