vv

13805 Reputation

20 Badges

9 years, 312 days

MaplePrimes Activity


These are answers submitted by vv

simpSum:=proc(S::specfunc(Sum))
local o1:=op(1,S), eq:=op(2,S), n,a,b,c;
if not type(eq, name=range) then return S fi;
n:=lhs(eq); a,b:=op(rhs(eq));
c:=max(select(type, [solve(o1,n)], integer));
if c>=a and c <= b then
  sum(o1, n=a..c-1) + Sum(o1, n=c+1..b)
else S fi;
end:

simpSum(Sum(n*x^n, n = 0 .. 20));

           

S:=Sum(n*(n-4)*x^(n^2), n = 0 .. infinity);
simpSum(S);

                     

             

S := Sum(epsilon^k*v(k,t)/k!, k = 0 .. infinity);

                  

S1 := diff(S, epsilon);

                       
 S1ok:=simpSum(S1);                   

                      

limit(%, epsilon=0);

                       

The result is correct. diff(x^n,x)  is 0 for n=0, not for n=1.
diff(Sum(x^n, n = 0 .. infinity), x) is correct too. Note that diff(Sum(f,...), x)  simply applies diff to f.
Of course, it is possible to simplify by eliminating the 0 term, but unfortunately it has to be done by hand (if you want).

S:=diff(Sum(x^n, n = 0 .. infinity),x);
eval(S, 'n = 0 .. infinity' = 'n = 1 .. infinity');

(In this case you may simply use eval(S, 0=1).)

I think that setting interface(typesetting=extended) solves the problem, but I cannot check this in Maple 2015.
But another problem is that the continued fraction appears as 1/( 1/... + 1). To change this, use inert operators g := x -> 1/(1 %+ x)

1 + something   is not  1.  It corresponds to Not(something).

with(GraphTheory):
G := RandomGraphs:-RandomGraph(8, .5):
u:=3;
DrawGraph(G);
add(map2(Degree, G, Neighbors(G,u)));

 

Here is the adaptation of the answer to your previous question. Note that now we must accept numerical solutions.

restart

f:=(exp(x^2)+exp(1))/(exp(x^2)-exp(1))+3;

(exp(x^2)+exp(1))/(exp(x^2)-exp(1))+3

(1)

 

 

b:=0: p:=0: a:=-c:

circ := (x-p)^2+(y-q)^2-r2: F:=unapply(eval(circ, y=f), x):
  

sys:=numer(simplify([F(b),F(c), D(F)(c)])):

fsolve(sys);

{c = -1.722111366, q = 3.005815153, r2 = 4.707895631}

(2)

assign(%);r1:=sqrt(r2);

2.169768566

(3)

plots:-display(
  plot(f, x=-5..5, view=-2..8,color=red, discont),
  plot([p+r1*cos(t), q+r1*sin(t), t=0..2*Pi]), scaling=constrained);

 

 

 

 

restart;

f := arcsin(x)/(1+(-x^2+1)^(1/2));

arcsin(x)/(1+(-x^2+1)^(1/2))

(1)

int(f,x);

Error, (in Utils:-TransformAndApply) numeric exception: division by zero

 

f1:=rationalize(f);

-(-1+(-x^2+1)^(1/2))*arcsin(x)/x^2

(2)

J:=Int(f1,x)

Int(-(-1+(-x^2+1)^(1/2))*arcsin(x)/x^2, x)

(3)

#map(rationalize,J);

F:=value(%);

(1/2)*arcsin(x)^2+(2*I)*arcsin(x)-(-(-x^2+1)^(1/2)+1+I*x)*arcsin(x)/x-2*ln(I*x+(-x^2+1)^(1/2)+1)

(4)

simplify(diff(F,x)-f);

0

(5)

plot(F,x=-1..1);

 

 

IntegrationTools:-Change(J, arcsin(x)=t);

Int(-(-1+(-sin(t)^2+1)^(1/2))*t*cos(t)/sin(t)^2, t)

(6)

simplify(%) assuming t<Pi/2,t>-Pi/2;

Int(t*cos(t)/(cos(t)+1), t)

(7)

value(%);

(1/2)*t^2-t*tan((1/2)*t)+ln(1+tan((1/2)*t)^2)

(8)

F1:=eval(%, t=arcsin(x));

(1/2)*arcsin(x)^2-arcsin(x)*tan((1/2)*arcsin(x))+ln(1+tan((1/2)*arcsin(x))^2)

(9)

simplify(diff(F1,x)-f);

0

(10)

F2:=eval(F1,tan = (u -> sin(2*u)/(1+cos(2*u))));

(1/2)*arcsin(x)^2-arcsin(x)*x/(1+(-x^2+1)^(1/2))+ln(1+x^2/(1+(-x^2+1)^(1/2))^2)

(11)

simplify(diff(F2,x)-f);

0

(12)

 

 

 

MROUND := (x,m) -> round(x/m)*m;

(m can be noninteger)

Here is a more general and robust (I think) procedure. I borrowed from mmcdara the examples and the idea to consider only rational functions.

restart;

C3:=proc(f::ratpoly, x, {plot::truefalse:=false})
  local p,q,a,b,c,r2,r1, sol,solnum, circ := (x-p)^2+(y-q)^2-r2,
        fn:=(u -> fnormal(evalf(u),Digits,Float(1,-Digits+3)));
  numer(eval(circ, y=f));
  rem(%, (x-a)^2*(x-b)^2*(x-c)^2, x);
  solve([coeffs(%,x)], [a,b,c,p,q,r2], explicit);
  select(u -> ( fn(eval(a,u))<fn(eval(b,u)) and fn(eval(b,u))<fn(eval(c,u)) ), %);
  sol:=map(rhs~,%); #a, b, c, p, q, r2  
  if not type(sol,list) or sol=[] then return "No solution!" fi;
  solnum:=simplify(map(fn, sol[1]), zero);
  if plot then
    a, b, c, p, q, r2 := solnum[]; r1:=sqrt(r2);
    print(plots:-display(
     :-plot(f, x=a-1..c+1, view=q-r1-1..q+r1+1,color=red, discont),
     :-plot([p+r1*cos(t), q+r1*sin(t), t=0..2*Pi]), scaling=constrained));
  fi;
  sol, solnum  
end proc:

C3(1/(x^2-2*x), x, plot);

 

[[1-2^(1/2), 1, 1+2^(1/2), 1, 1/2, 9/4]], [-.414213562, 1., 2.414213562, 1., .5000000000, 2.250000000]

(1)

C3((1/2)*(2+x)/(x*(x+1)), x, plot);

 

[[-(1/6)*(-2*(46+(6*I)*237^(1/2))^(2/3)-(3*I)*237^(1/2)+(22*(46+(6*I)*237^(1/2))^(4/3)+(66*I)*(46+(6*I)*237^(1/2))^(1/3)*237^(1/2)-363*(46+(6*I)*237^(1/2))^(2/3)-(414*I)*237^(1/2)+506*(46+(6*I)*237^(1/2))^(1/3)+4812)^(1/2)-11*(46+(6*I)*237^(1/2))^(1/3)-23)/(46+(6*I)*237^(1/2))^(2/3)-(1/6)*(46+(6*I)*237^(1/2))^(1/3)-(11/3)/(46+(6*I)*237^(1/2))^(1/3)-2/3, (1/6)*(-2*(46+(6*I)*237^(1/2))^(2/3)-(3*I)*237^(1/2)+(22*(46+(6*I)*237^(1/2))^(4/3)+(66*I)*(46+(6*I)*237^(1/2))^(1/3)*237^(1/2)-363*(46+(6*I)*237^(1/2))^(2/3)-(414*I)*237^(1/2)+506*(46+(6*I)*237^(1/2))^(1/3)+4812)^(1/2)-11*(46+(6*I)*237^(1/2))^(1/3)-23)/(46+(6*I)*237^(1/2))^(2/3), (1/6)*(46+(6*I)*237^(1/2))^(1/3)+(11/3)/(46+(6*I)*237^(1/2))^(1/3)-1/3, 0, -1, 4]], [-1.551387524, -.5731827454, 1.124570270, 0., -1., 4.]

(2)

C3(-(1/2)*(3*x+1)/(x*(x+3)), x, plot);

 

[[-10/3-(1/6)*(-184+(2*I)*10058^(1/2))^(1/3)-7/(-184+(2*I)*10058^(1/2))^(1/3)+(1/6)*(I*10058^(1/2)+10*(-184+(2*I)*10058^(1/2))^(2/3)-(4782+42*(-184+(2*I)*10058^(1/2))^(4/3)+(42*I)*(-184+(2*I)*10058^(1/2))^(1/3)*10058^(1/2)+(552*I)*10058^(1/2)-1323*(-184+(2*I)*10058^(1/2))^(2/3)-3864*(-184+(2*I)*10058^(1/2))^(1/3))^(1/2)+21*(-184+(2*I)*10058^(1/2))^(1/3)-92)/(-184+(2*I)*10058^(1/2))^(2/3), -(1/6)*(I*10058^(1/2)+10*(-184+(2*I)*10058^(1/2))^(2/3)-(4782+42*(-184+(2*I)*10058^(1/2))^(4/3)+(42*I)*(-184+(2*I)*10058^(1/2))^(1/3)*10058^(1/2)+(552*I)*10058^(1/2)-1323*(-184+(2*I)*10058^(1/2))^(2/3)-3864*(-184+(2*I)*10058^(1/2))^(1/3))^(1/2)+21*(-184+(2*I)*10058^(1/2))^(1/3)-92)/(-184+(2*I)*10058^(1/2))^(2/3), (1/6)*(-184+(2*I)*10058^(1/2))^(1/3)+7/(-184+(2*I)*10058^(1/2))^(1/3)-5/3, -2, 10/9, 289/81]], [-3.745060582, -1.137576607, -.117362812, -2., 1.111111111, 3.567901235]

(3)

C3(x/(x^2+1), x);

"No solution!"

(4)

 


Download c3.mw

(mapleprimes does not render all the output)

restart;
f:=x->1/(x^2-2*x):
P:=plot(f, -4..4, color=red, discont, view=-4..4, scaling=constrained):
#normal at (a, f(a));
y - f(a) + 1/D(f)(a)*(x-a):
# center of the circle is (1,b)
b:=solve(eval(%, x=1), y):
(b-f(1))^2 = (1-a)^2 + (b-f(a))^2:
A:=select(u->is(u>2), {solve(%)}):
for a1 in A do
  b1:= simplify(eval(b, a=a1)); r1:=abs(b1-f(1));
  Q:=plot( [1+r1*cos(t), b1+r1*sin(t), t=0..2*Pi]):
  print( plots:-display(P,Q, title=typeset(Center=[1,b1],`, r`=r1)) );
od:

You can make a "custom lightmodel" using color

restart;
g:=exp(-x^2-y^2):
grad:=[diff(g,x),diff(g,y),-1]:
grad:=-grad/~sqrt(add(grad^~2)):
light:=[-1/sqrt(3),-1/sqrt(3),1/sqrt(3)]:
c:=add(grad*~light):
LED := plot3d(<3 + cos(t)*cos(s), cos(t)*sin(s), sin(t)>, s = 0..2*Pi, t =-Pi/2..Pi/2, 
              color = "Yellow", style=surface, lightmodel = none):
plots:-display(LED, plot3d(g, x=-2..2, y=-2..2, color=[1,1,c, colortype=HSV], style=surface),scaling=constrained);

subs does not evaluate. If you use

Cq:= proc(x,y)
  evalb(x=eval(y,{q2=q1,q1=q2}))
end proc;

everything works as expected. 

The integrals do not make much sense.
You integrate wrt RR = 0..R an indefinite integral. But the indefinite integral is determined up to an (additive) unknown constant.
So, the final result will be also up to a constant, hence it is useless.

You have the derivative of a function (defined by a piecewise expression) at the point t=0 (not an equation!).
The function is not derivable at this point because it is not correctly defined for t<0  (ln(0)).
You probably want the right-derivative, but Maple has only two-sided derivatives.
(It can be computed as a right-limit if you want, or simply remove the first branch in piecewise).
 

It actually works. I added the list type and set the base b to 10.

restart
`&*` := proc(A::list, B::list, b := 10, d := 4) 
    local i, k, c := 0; 
    [seq(irem(c + add(A[i]*B[k+1-i], i = 1 .. k), b, 'c'), k = 1 .. d)]
 end proc:
[4,3,2,1] &* [5,4,3,2]
#                          [0, 3, 7, 3]

1234*2345 mod 10^4;   # check
#                              3730

 

First 25 26 27 28 29 30 31 Last Page 27 of 120