vv

13805 Reputation

20 Badges

9 years, 314 days

MaplePrimes Activity


These are answers submitted by vv

For f : (0, oo) --> (0, oo), a solution is:

phi := sqrt(5)/2 + 1/2:
f := x -> phi^(1-phi)*x^phi;

Try to check it.

Save the worksheet as rtf (or LaTeX) and then produce the pdf from here.
A pdf obtained from rtf is very small!

 

1.  y = f(p) + g(p)   means actually  y = h(p)

so, it's in the d'Alembert pattern y = x*f(p) + g(p)   for f=0, g=h.

2. dsolve(ode) solves the ode using the y = g(y') pattern [independent of x], so, a RootOf form.

The situation is almost the same as in your previous question except that now Expand works properly in Maple 2015
(Maple 2020 works directly -- your "Method 1").

In Maple 2020 the result is directly   -4.211444465*10^(-43)*y + 4.534504493*10^(-43)

In earlier versions try:

Int(q*AAA/sqrt(p^2 + q^2 + 1), [p = 0 .. L, q = 0 .. L]):
evalf(IntegrationTools:-Expand(%));

 

The simplest solution is to open the worksheet in Maple 2020 and then export it as mpl (i.e. text file).
Now you can open the .mpl file. You may want to split it into several execution groups (1D input).

Another solution (since you are already using 1D input)  is to simply remove the output from worksheet (Ctrl + D) and reexecute.

Am am sure it is based on the Euclidean algorithm for polynomials. (The modulus is in general a prime number).

Your system is numerically unstable.
Supposing that the constants are "exact", it is possible to make a mix of symbolic and numeric approaches.
The ideea is to convert the constants to rationals (for a precision of 15 digits) then solve the system symbolically wrt the variable ionic (because this is possible), then solve the univariate equation in ionic with very high precision.

Here are the results. The solution is unique [almost]. Some variables are negative.


 

restart;

Digits:=15;

15

(1)

eq1:=K_1=(((n_Cl-x)*u_Cl)*(n_H*u_H))/(n_HCl*m);
eq2:=K_2=(((n_Na-x)*u_Na)*(n_OH*u_OH))/(n_NaOH*m);
eq3:=K_w=(n_H*u_H/m)*(n_OH*u_OH/m);
eq4:=(n_NaCl-x)=(n_Na-x)+n_NaOH;
eq5:=(n_NaCl-x)=(n_Cl-x)+n_HCl;
eq6:=(n_Na-x)+n_H=(n_Cl-x)+n_OH;
eq7:=2*ionic=(n_H/m)+((n_Cl-x)/m)+((n_Na-x)/m)+(n_OH/m);
eq8:=u_H=0.4077*ionic^2-0.3152*ionic+0.9213;
eq9:=u_Na=0.0615*ionic^2-0.2196*ionic+0.8627;
eq10:=u_OH=0.1948*ionic^2-0.1803*ionic+0.8887;
eq11:=m=r*V;
eq12:=u_Cl=(1.417625986641341e-01)*exp(-ionic/2.199955601666953e-02)+2.369460669647978e-01*exp(-ionic/3.756472377688394e-01)+5.859738096037875e-01;
 

K_1 = (n_Cl-x)*u_Cl*n_H*u_H/(n_HCl*m)

 

K_2 = (n_Na-x)*u_Na*n_OH*u_OH/(n_NaOH*m)

 

K_w = n_H*u_H*n_OH*u_OH/m^2

 

n_NaCl-x = n_Na-x+n_NaOH

 

n_NaCl-x = n_Cl-x+n_HCl

 

n_Na-x+n_H = n_Cl-x+n_OH

 

2*ionic = n_H/m+(n_Cl-x)/m+(n_Na-x)/m+n_OH/m

 

u_H = .4077*ionic^2-.3152*ionic+.9213

 

u_Na = 0.615e-1*ionic^2-.2196*ionic+.8627

 

u_OH = .1948*ionic^2-.1803*ionic+.8887

 

m = r*V

 

u_Cl = .1417625986641341*exp(-45.4554627939891*ionic)+.2369460669647978*exp(-2.66207201719228*ionic)+.5859738096037875

(2)

#constants
K_1:=10^(8);K_2:=10^(-0.2);K_w:=10^(-13.995);n_NaCl:=1.2*10^(-4);V:=5*10^(-8);r:=997.0;x:=0;
 

100000000

 

.630957344480193

 

0.101157945425990e-13

 

0.120000000000000e-3

 

1/20000000

 

997.0

 

0

(3)

eq:={seq(eq||i,i=1..12)}:

Eq:=convert(eq,rational):

nops(Eq);

12

(4)

X:=indets(Eq,name);nops(%);

{ionic, m, n_Cl, n_H, n_HCl, n_Na, n_NaOH, n_OH, u_Cl, u_H, u_Na, u_OH}

 

12

(5)

S:=eliminate(Eq, X minus {ionic}):

f:=simplify(S[2])[]:

############

Digits:=200;

200

(6)

############

plot(f, ionic=0..3);

 

ionicS:=fsolve(f):

eval(S[1], ionic=ionicS):

evalf[15]([ionic=ionicS, %[]]);

[ionic = 2.40722164287621, m = 0.498500000000000e-4, n_Cl = 0.120000000000000e-3, n_H = -0.570189355755727e-11, n_HCl = -0.203222877739516e-18, n_Na = 0.120000004599272e-3, n_NaOH = -0.459927245018502e-11, n_OH = -0.110262131059512e-11, u_Cl = .586364294954344, u_H = 2.52504946683014, u_Na = .690449163557180, u_OH = 1.58348862197850]

(7)

 

 

 

###### Precision check

eval(f,ionic=ionicS);

0.23962833294454762502864124840136613066328936070999815539241196442017321814523037838085545177856951081566864562952416179056576403619594972564687659275843824010627201071429444585847063334975635851082636e-66

(8)

eval(f,ionic=ionicS-1e-190);

-0.21177153923974396361906170327470731797368197252746086982804407355632808153584734689408100550931080518334716557509197798241249396698817057004042718885026979469391788946875771652742342222284717170262391e-65

(9)

eval(f,ionic=ionicS+1e-190);

0.19949058717633589783634383929413730377718839279107346436418296037979420410590429000206216360565911775404414748657886469064599856013312814660102476347139983488847144891965012617717680226367217800405131e-65

(10)

 

 

solve( sum((1/(1+x+x^2))*y^n, n=1..infinity) = 1, parametric=true, real) assuming abs(y)<1;

    [{x = x, y = (x^2 + x + 1)/(x^2 + x + 2)}]

assuming is necessary, otherwise the series is divergent.

 

Maple cannot compute the integral directly.
We shall use residues.

restart;

Int( (cosh(a*x)-1)/sinh(b*x)/x, x=0..infinity) assuming a>0, b>0;
ans := -ln(cos(a*Pi/(2*b))); # abs(a)<b

Int((cosh(a*x)-1)/(sinh(b*x)*x), x = 0 .. infinity)

 

-ln(cos((1/2)*a*Pi/b))

(1)

f:=(cosh(a*x)-1)/sinh(b*x)/x;
# f is even, so we'll assume  0<a<b

(cosh(a*x)-1)/(sinh(b*x)*x)

(2)

singular(f,x);

{x = 0}, {x = I*Pi*_Z1/b}

(3)

r_n := residue(f, x=n*I*Pi/b) assuming n::integer;

-I*(cos(a*n*Pi/b)-1)/((-1)^n*n*Pi)

(4)

J:=Pi*I*sum(r_n, n=1..infinity) assuming a>0,b>a; # f is even

I*Pi*(((1/2)*I)*ln(1+exp(I*a*Pi/b))/Pi+((1/2)*I)*ln(1+exp(-I*a*Pi/b))/Pi-I*ln(2)/Pi)

(5)

evalc(J) assuming  a>0,b>a;

-Pi*((1/2)*ln((1+cos(a*Pi/b))^2+sin(a*Pi/b)^2)/Pi-ln(2)/Pi)

(6)

ANSWER:=expand(simplify(eval(%, a=2*b*c/Pi))) assuming 0<c,c<Pi/2;

-ln(cos(c))

(7)

ANSWER := eval(ANSWER, c = Pi*a/b/2);

-ln(cos((1/2)*a*Pi/b))

(8)


Download JInt-res.mw

 

 

 

Probably you mean:

 

Show that  A  implies  B, where  x >0  and

 

A := y = (sqrt(x) + 10)^(1/3) - (sqrt(x) - 10)^(1/3);

y = (x^(1/2)+10)^(1/3)-(x^(1/2)-10)^(1/3)

(1)

B := y^3 = 20 - 3*(x - 100)^(1/3)*y;

y^3 = 20-3*(x-100)^(1/3)*y

(2)

###############################################

factor( eval( (lhs-rhs)(B), A));;

-3*((x^(1/2)+10)^(1/3)-(x^(1/2)-10)^(1/3))*((x^(1/2)+10)^(1/3)*(x^(1/2)-10)^(1/3)-(x-100)^(1/3))

(3)

combine(%) assuming x>0;

-3*((x^(1/2)+10)^(1/3)-(x^(1/2)-10)^(1/3))*(((x^(1/2)+10)*(x^(1/2)-10))^(1/3)-(x-100)^(1/3))

(4)

expand(%);

0

(5)

# QED
# Note: The implication holds for x :: real

 

restart;
`diff/f` := (u,x) -> f[op(procname)-1](u)*diff(u,x):

Examples

diff(f[4](x), x, x);
    
f[2](x)

diff(x^2 + f[4](f[5](2*x)),  x,  x);
    
2 + 4*f[2](f[5](2*x))*f[4](2*x)^2 + 4*f[3](f[5](2*x))*f[3](2*x)

 

f:=proc(x,y)
   local lm := op(procname);
   if not type(procname, 'indexed') or nops([lm])<>2 then error "Two indices needed" fi;
   x^lm[1] + y^lm[2]
end proc:

 

It's possible in any dimension using quadratic forms. Here is an example when the quadric has a center.

[Your question is again more about maths than programming].

restart;

with(LinearAlgebra):

n:=3;
f := 7*x[1]^2 + 4*x[1]*x[2] - 4*x[1]*x[3] + 4*x[2]^2 - 2*x[2]*x[3] + 4*x[3]^2 - 4*x[1] + 5*x[2] + 4*x[3] - 18

3

 

7*x[1]^2+4*x[1]*x[2]-4*x[1]*x[3]+4*x[2]^2-2*x[2]*x[3]+4*x[3]^2-4*x[1]+5*x[2]+4*x[3]-18

(1)

plots:-implicitplot3d(f, x[1]=-5..5, x[2]=-5..5, x[3]=-5..5, style=surface, numpoints=64000, scaling=constrained);

 

A:=VectorCalculus:-Hessian(1/2*f,[seq(x[i],i=1..n)]);

Matrix(3, 3, {(1, 1) = 7, (1, 2) = 2, (1, 3) = -2, (2, 1) = 2, (2, 2) = 4, (2, 3) = -1, (3, 1) = -2, (3, 2) = -1, (3, 3) = 4})

(2)

b:=eval(Vector( [ seq(diff(f,x[i]),i=1..n)]), [seq(x[i]=0,i=1..n)]);

Vector(3, {(1) = -4, (2) = 5, (3) = 4})

(3)

c:=eval(f,[seq(x[i]=0,i=1..n)]);

-18

(4)

X:=Vector([seq(x[i],i=1..n)]);

Vector(3, {(1) = x[1], (2) = x[2], (3) = x[3]})

(5)

solve([ seq(diff(f,x[i]),i=1..n)],{seq(x[i],i=1..n)}); # the center

{x[1] = 11/27, x[2] = -26/27, x[3] = -29/54}

X0:= Vector[column]( eval([seq(x[i],i=1..n)],%) );

Vector(3, {(1) = 11/27, (2) = -26/27, (3) = -29/54})

(6)

J,Q := JordanForm(A,output=['J','Q']);

J, Q := Matrix(3, 3, {(1, 1) = 3, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 9, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 3}), Matrix(3, 3, {(1, 1) = 5/6, (1, 2) = 2/3, (1, 3) = 1/2, (2, 1) = -1/3, (2, 2) = 1/3, (2, 3) = 0, (3, 1) = 4/3, (3, 2) = -1/3, (3, 3) = 1})

T:=Matrix(GramSchmidt([seq( Q[..,j],j=1..n)],normalized)); # T is orthogonal

Matrix(3, 3, {(1, 1) = (5/93)*sqrt(93), (1, 2) = (1/3)*sqrt(6), (1, 3) = -(1/31)*sqrt(62), (2, 1) = -(2/93)*sqrt(93), (2, 2) = (1/6)*sqrt(6), (2, 3) = (7/62)*sqrt(62), (3, 1) = (8/93)*sqrt(93), (3, 2) = -(1/6)*sqrt(6), (3, 3) = (3/62)*sqrt(62)})

(7)

fnew:=simplify( (T.X+X0)^+. A. (T.X+X0) + b.(T.X+X0) + c ); # ==> ellipsoid

-602/27+3*x[1]^2+9*x[2]^2+3*x[3]^2

(8)


 

Download quadric.mw

First 37 38 39 40 41 42 43 Last Page 39 of 120