vv

14077 Reputation

20 Badges

10 years, 69 days

MaplePrimes Activity


These are questions asked by vv

unames()   produces an error  in extended typsetting mode (the default in Maple 2017)  after any output.

#interface(typesetting=standard);

restart;

interface(typesetting=extended);

extended

(1)

unames();

Error, invalid input: Typeset:-Kernel expects an equation for keyword parameter numericformatting

 

` `

 

Error, unexpected result from Typesetting

 

 

According to the help page:
interface(displayprecision=n)
sets the number of decimal places to be displayed to n.
But this is true only if interface(typesetting=extended).
For interface(typesetting=standard),  n represents the number of decimal places after the decimal point.
Is there any reason for this decision?

restart;
x:=123.456789012345:
interface(displayprecision=4):
interface(typesetting=standard): x;

                        123.4568
interface(typesetting=extended): x;
                        123.5

 

 

L := sum( 1/ln(k), k=2..n ) * ln(n)/n;
        
limit(L, n=infinity);
                               0
# Should be 1

Just curious: in Maple 2017, is it OK?

 


 

How is it possible that  GraphTheory:-TravelingSalesman  
is much slower than a simple brute-force solution?

 

restart;

n:=10:

A:=Matrix(n, (i,j)->`if`(i=j,0,n*(n-i)^4+2*j+(n-i)^2+j^3)):A[1,2]:=100*n^3:A;

Matrix([[0, 100000, 65724, 65763, 65826, 65919, 66048, 66219, 66438, 66711], [41027, 0, 41057, 41096, 41159, 41252, 41381, 41552, 41771, 42044], [24062, 24071, 0, 24131, 24194, 24287, 24416, 24587, 24806, 25079], [12999, 13008, 13029, 0, 13131, 13224, 13353, 13524, 13743, 14016], [6278, 6287, 6308, 6347, 0, 6503, 6632, 6803, 7022, 7295], [2579, 2588, 2609, 2648, 2711, 0, 2933, 3104, 3323, 3596], [822, 831, 852, 891, 954, 1047, 0, 1347, 1566, 1839], [167, 176, 197, 236, 299, 392, 521, 0, 911, 1184], [14, 23, 44, 83, 146, 239, 368, 539, 0, 1031], [3, 12, 33, 72, 135, 228, 357, 528, 747, 0]])

(1)

with(GraphTheory):

G:=Graph(A);

GRAPHLN(directed, weighted, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], Array(%id = 18446744074326770022), `GRAPHLN/table/1`, Matrix(%id = 18446744074326769782))

(2)

t:=time[real]():
TravelingSalesman(G);
'time'=time[real]()-t;

156750, [1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 1]

 

time = 36.410

(3)

############### brute-force #############

t:=time[real]():
P:=Iterator:-Permute([seq(2..n)]):
cmin:=infinity: ord:=<"none">:
for  v in P do
  f:=add(A[v[k],v[k+1]],k=1..n-2) + A[1,v[1]]+A[v[n-1],1];
  if f<cmin then cmin:=f; ord:=copy(v) fi;
od:
cmin,[1, entries(ord,'nolist',indexorder),1];
'time'=time[real]()-t;

156750, [1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 1]

 

time = 1.715

(4)

# And for n=11 I had to interrupt TravelingSalesman;
# brute-force still works for n=12.


 

Download TravelingSalesman-test.mw


 

restart;

Digits:=10;
to 10 do
evalf(add(sin(k), k = 1 .. 10000)) od;

10

 

1.633891035

 

1.633891035

 

1.633891035

 

1.633891046

 

1.633891046

 

1.633891046

 

1.633891012

 

1.633891012

 

1.633891012

 

1.633891049

(1)

restart;   # execute several times to obtain randomness

interface(version);

`Standard Worksheet Interface, Maple 2016.2, Windows 7, January 13 2017 Build ID 1194701`

(2)

Digits:=18;

18

(3)

to 10 do  
evalf(add(sin(k), k = 1 .. 10000)) od;

1.63389102179246197

 

1.63389102179246223

 

1.63389102179246223

 

1.63389102179246233

 

1.63389102179246233

 

1.63389102179246242

 

1.63389102179246242

 

1.63389102179246371

 

1.63389102179246371

 

1.63389102179246410

(4)

 

First 8 9 10 11 12 13 Page 10 of 13