Many problems in mathematics are easy to define and conceptualize, but take a bit of deeper thinking to actually solve. Check out the Olympiad-style question (from this link) below:

 

Former Maplesoft co-op student Callum Laverance decided to make a document in Maple Learn to de-bunk this innocent-looking problem and used the powerful tools within Maple Learn to show step-by-step how to think of this problem. The first step, I recommend, would be to play around with possible values of a and b for inspiration. See how I did this below:


Based on the snippet above, we might guess that a = 0.5 and b = 1.9. The next step is to think of some equations that may be useful to help us actually solve for these values. Since the square has a side length of 4, we know its area must be 42 = 16. Therefore, the Yellow, Green and Red areas must add exactly to 16. That is,


With a bit of calculus and Maple Learn's context panel, we can integrate the function f(x) = ax2 from x = -2 to x = 2 and set it equal to this value of 8/3. This allows us to solve for the value of a.


We see that a = 1/2. Since the area of the Red section must be three times that of the Yellow (which we determined above to be 8/3), we get Red = (8/3)*3 = 8.

The last step is to find the value of b. In the figure below, we know that the line y = 4 and the curve y = bx2 intersect when bx2 = 4 (i.e. when x = ± 2/sqrt(b)).

 

Since we know the area of the red section is 8 square units, that must be the difference between the entire area underneath the horiztonal line at y = 4 and the curve y = bx2 on the interval [-2/sqrt(b), 2/sqrt(b)]. We can then write the area of the Red section as an integral in terms of b, then solve for the value of b, since we know the Red area is equal to 8.

Voila! Setting a = 1/2 and b = 16/9 ≈ 1.8 guarantees that the ratio of Yellow to Green to Red area within the square is 1:2:3, respectively. Note this is quite close to our original guess of a = 0.5 and b = 1.9. With a bit of algebra and solving a couple of integrals, we were able to solve a mathematics Olympiad problem!

Please Wait...