What is Groebner? That was asked in different forms several times in MaplePrimes and MathStackExchange (for example, see http://math.stackexchange.com/questions/3550/using-gr?bner-bases-for-solving-polynomial-equations ). In view of this I think the presented post on Groebner basis will be useful. This post consists of two parts: its mathematical background and examples of solutions of polynomial systems by hand and with Maple.

Let us start. Up to Wiki http://en.wikipedia.org/wiki/Gr%C3%B6bner_basis ,Groebner basis computation can be seen as a multivariate, non-linear generalization of both Euclid's algorithm for computing polynomial greatest common divisors, and Gaussian elimination for linear systems. This is implemented in Maple trough the Groebner package.
The simplest introduction to the topic I know is a well-written book of Ivan Arzhantsev (https://zbmath.org/?q=an:05864974) which includes the proofs of all the claimed theorems and the solutions of all the exercises. Here is its digest groebner.pdf done by me (The reader is assumed to be familiar with the ideal notion and ring notion (one may refresh her/his knowledge, looking in http://en.wikipedia.org/wiki/Ideal_%28ring_theory%29)). It should be noted that there is no easy reading about this serious matter.
Referring to the digest as appropriate, we solve the system
S:={a*b = c^2+c, a^2 =a+ b*c, a*c = b^2+b} by hand and with the Groebner package.
For the order a > b > c we construct its ideal
J(S):=<f1 = a*b-c^2-c,f2 = a^2-a-b*c, f3 = a*c-b^2-b>.
The link between f1 and f2 gives
f1*a-f2*b = (-c^2-c)*a + (a + b*c)*b = a*b -a*c + b^2*c -
a*c^2 =f4.
The reduction with f1 produces
f4 ->-a*c^2- a*c + b^2*c + c^2 +c =: f4.
Now the reduction with f3 produces
f4 -> -b^2- b - b*c +c^2 + c =:f4.
The link between f2 and f3 gives:
f2*c - f3*a = a*b +a*b^2 -a*c -b*c^2 = f5.
The reduction with f1 produces
f5 -> -a*c + c*b +c^2 +c =:f5.
The reduction with f3 produces
f5 -> -b^2 -b + c*b +c^2 +c =:f5.
The reduction with f4 produces
f5 -> 2b*c =: f5.
The link between f1 and f3
f1*c - f3*b = b^3 + b^2 -c^3 -c^2=:f6.
The reduction with f4 produces
f6 -> 2b*c + 2b*c^2 -2c^3 -2c^2=:f6.
At last, we reduce f6 by f5, obtaining f6:= -2c^3 -2c^2.
We see the minimal reduced Groebner basis of S consists of
a^2 -a -b*c, -b^2 -b- b*c +c^2 +c, -2c^3 - 2c^2.
Now we find the solution set of the system under consideration. The equation -2c^3 - 2c^2 = 0 implies
c=0, c=0, c=-1. The the equation -b^2 - b - b*c +c^2 + c = 0 gives
b = 0 , b = -1, b = 0, b = -1, b = 0, b = 0 respectively.
At last, knowing b and c, we find a from a^2 -a -b*c = 0.
Hence,
[{a = 0, b = 0, c = 0}, {a = 1, b = 0, c = 0}, {a = 0, b = -1, c = 0}], [{a = 0, b = 0, c = 0}, {a = 1, b = 0, c = 0}, {a = 0, b = -1, c = 0}], [{a = 0, b = 0, c = -1}].
The solution of the system under consideration by the Groebner package is somewhat different because Maple does not find the minimal reduced Groebner basis directly.

 

with(Groebner):

[b*c, a*c-c^2-c, b^2-c^2+b-c, a*b-c^2-c, a^2-a, c^3+c^2]

(1)

GB2 := remove(has, GB1, a);

[b*c, b^2-c^2+b-c, c^3+c^2]

(2)

GB3 := Basis(GB2, lexdeg([b, c]))

[b*c, b^2-c^2+b-c, c^3+c^2]

(3)

op(remove(has, GB3, {b}))

c^3+c^2

(4)

solc := solve(c^3+c^2);

-1, 0, 0

(5)

solb := [seq(op(map(`union`, [solve(eval(GB3, c = i), {b})], {c = i})), i = solc)]

[{b = 0, c = -1}, {b = -1, c = 0}, {b = 0, c = 0}, {b = -1, c = 0}, {b = 0, c = 0}]

(6)

sol := seq(op(map(`union`, [solve(eval(GB1, i))], i)), i = solb)

{a = 0, b = 0, c = -1}, {a = 0, b = -1, c = 0}, {a = 0, b = 0, c = 0}, {a = 1, b = 0, c = 0}, {a = 0, b = -1, c = 0}, {a = 0, b = 0, c = 0}, {a = 1, b = 0, c = 0}

(7)

NULL

S2 := {a*c-b^2-b, a*b-c^2-c, a^2-b*c+a}:

GB1 := Basis(S2, lexdeg([a, b, c]))

[a*c+b*c+c^2+c, b^2+b*c+c^2+b+c, a*b-c^2-c, a^2-b*c+a]

(8)

GB2 := remove(has, GB1, a)

[b^2+b*c+c^2+b+c]

(9)

sol1 := solve(GB2, b)

{b = -(1/2)*c-1/2+(1/2)*(-3*c^2-2*c+1)^(1/2)}, {b = -(1/2)*c-1/2-(1/2)*(-3*c^2-2*c+1)^(1/2)}

(10)

map(proc (c) options operator, arrow; `union`(c, sol1[1]) end proc, map(proc (C) options operator, arrow; solve(C, {a}) end proc, eval(S2, sol1[1])))

{{a = 2*c*(c+1)/(-c-1+(-3*c^2-2*c+1)^(1/2)), b = -(1/2)*c-1/2+(1/2)*(-3*c^2-2*c+1)^(1/2)}, {a = -1/2-(1/2)*(1+2*c*(-3*c^2-2*c+1)^(1/2)-2*c^2-2*c)^(1/2), b = -(1/2)*c-1/2+(1/2)*(-3*c^2-2*c+1)^(1/2)}, {a = -1/2+(1/2)*(1+2*c*(-3*c^2-2*c+1)^(1/2)-2*c^2-2*c)^(1/2), b = -(1/2)*c-1/2+(1/2)*(-3*c^2-2*c+1)^(1/2)}, {a = -(1/2)*c-1/2-(1/2)*(-3*c^2-2*c+1)^(1/2), b = -(1/2)*c-1/2+(1/2)*(-3*c^2-2*c+1)^(1/2)}}

(11)

``

 

Download groebner.mw


Please Wait...