Dear all,

Recently we learned that the idea of "anti-secularity" in perturbation methods was known to Mathieu already by 1868, predating Lindstedt by several years.  The Maple worksheet linked below recapitulates Mathieu's computations:

https://github.com/rcorless/MathieuPerturbationMethod

Nic Fillion and I wrote a more general introduction to perturbation methods using Maple and you can find that paper at 

https://arxiv.org/abs/1609.01321

and the supporting Maple code in a workbook at 

https://github.com/rcorless/Perturbation-Methods-in-Maple

For instance, one of the problems solved is the lengthening pendulum and when we do so taking proper account of anti-secularity (we use renormalization for that one, I seem to remember) we get an error curve that is bounded over time.

 

 

Hope that some of you find this useful.


Please Wait...