MaplePrimes Posts

MaplePrimes Posts are for sharing your experiences, techniques and opinions about Maple, MapleSim and related products, as well as general interests in math and computing.

Latest Post
  • Latest Posts Feed
  • Ibragimova Evelina, 6 class,
    school № 57, Kazan

    The manual with examples
    ( templates for the solution of )

    The solution of problems on simple interest

     

    > restart:
    > with(finance);

    [amortization, annuity, blackscholes, cashflows, effectiverate,

    futurevalue, growingannuity, growingperpetuity, levelcoupon,

    perpetuity, presentvalue, yieldtomaturity]

    Team futurevalue (the first installment, rate, period) - the total calculation for a given down payment, interest rate, payments and number of periods.

    Example 1. To the Bank account, the income of which is 15% per annum, has made 24 thousand rubles. How many thousands of rubles will be in this account after a year if no transactions on the account will not be carried out? (The answer: 27.60 thousand rubles.)

    > futurevalue(260,0.40,1);

    364.00

    > evalf(1000/216);

    > 364*3;

    1092

    > u:=fsolve(presentvalue(1e6,x,1250)=950,x)*950;

    u := 5.303626495

    >

    Team presentvalue (future amount, rate, period) - the calculation of the initial input to obtain a specified final amount at an interest rate of charges and the number of periods.

    Example 2. How much you need to put money in the Bank today, so that when the rate of 27% per annum have in the account after 10 years 100000 thousand rubles? (The answer: 9161.419934 rubles.)

    > presentvalue(680,-0.20,1);

    850.0000000

     

    The solution of problems in compound interest

    The solution of problems 
    Using commands <futurevalue> и <presentvalue >
    > restart;
    > with(finance):
    Direct task
    > futurevalue(,0.,);
    `,` unexpected
    The inverse problem
    > presentvalue(,0.,);
    `,` unexpected

    I. Case with the same interest rate every period

    Using the universal formula F = P*(1+r)^n; , where:
    F - the future value (final amount).
    P - the initial payment (current amount).
    r - the interest rate period.
    n - the number of periods.
    This formula for the case with the same interest rate every period

    > restart:
    The task of the formula
    > y:=F=P*((1+r)^n):
    > y;

    n
    F = P (1 + r)

    The job parameters are known quantities
    The interest rate

    > r:=;
    `;` unexpected
    The number of years (periods)
    > n:=3;

    n := 3

    The initial payment (present value)
    > P:=;
    `;` unexpected
    The final amount
    > F:=2.16;

    F := 2.16

    The solution of the equation - the calculation of unknown values (in decimal form)
    > `Unknown`;fsolve(y);

    Unknown


    0

    >


    II. The case of different interest rates for each period

    Formula An = A*(1+1/100*p1)*(1+1/100*p2)*(1+1/100*p3); ... %?(1+1/100*pn); , where
    An - the final amount
    A - the initial payment (current amount at the moment)
    p1, p2, p3, .... pn - interest rate periods
    n - the number of periods

    > restart:
    The task of the formula (need to be adjusted based on the number of periods)
    > y:=An=A*(1+1/100*p1)*(1+1/100*p2)*(1+1/100*p3):
    > y;

    An = A (1 + 1/100 p1) (1 + 1/100 p2) (1 + 1/100 p3)

    The task of the parameters of the known values
    The initial payment (present value)
    > A:=;
    `;` unexpected
    Interest rate periods
    p1:=0.30;
    p2:=0.10;
    p3:=0.15;


    p1 := .30


    p2 := .10


    p3 := .15

    The final amount
    > An:=;
    `;` unexpected
    The solution of the equation - the calculation of unknown values (in decimal form)
    > `Unknown`;fsolve(y);

    Unknown


    0

    >

     angl.FINANCE.mws

    Ibragimova Evelina, 6th form,
    school № 57, Kazan

     

         Matreshka.mws 

     

     

     

     Ibragimova Evelina, the 6th form

     school # 57, Kazan, Russia

    The Units Converter

    restart:
    `Conversion formula`;
    d:=l=n*m:
    d;

                        Conversion formula
                        l = n m

    m - shows how many minor units in one major one (coefficient)
    `Coefficient`;
    m:=1000;
                       Coefficient
                       m:=1000

    n - the number of major units
    n:=7/3;
                       n := 7/3

    l - the number of minor units
    l:=;

    The result (the desired value)
    solve(d);
                       7000/3
    evalf(solve(d));
                       2333.333333

    That is : there are 2333.3 (or 7000/3 ) minor units in 7/3 major units .

     

    Other example

    m - shows how many minor units in one major one (coefficient) 
    `Coefficient`;
    m:=4200;
                       Coefficient
                       m:=4200

    n - the number of major units 
    n:=;
                     
    l - the number of minor units
    l:=100;

                      l:=100

    The result (the desired value)
    solve(d);
                       1/42
    evalf(solve(d));
                       0.02380952381

    That is : there are 0.02 (or 1/42) major units in 100 minor units .

     

    Another example

    m - shows how many minor units in one major one (coefficient) 
    `Coefficient`;
    m:=;
                       Coefficient

    n - the number of major units 
    n:=2;

                        n := 2
                     
    l - the number of minor units
    l:=200;

                      l:=200

    The result (the desired value)
    solve(d);
                       100
    evalf(solve(d));
                      100

    That is : Coefficient is 100 .

      The geometry of the triangle
      Romanova Elena,  8 class,  school 57, Kazan, Russia

           Construction of triangle and calculation its angles

           Construction of  bisectors
          
           Construction of medians
          
           Construction of altitudes


    > restart:with(geometry):      

    The setting of the height of the triandle and let's call it "Т"
    > triangle(T,[point(A,4,6),point(B,-3,-5),point(C,-4,8)]);

                                      T

            Construction of the triangle
    > draw(T,axes=normal,view=[-8..8,-8..8]);

    Construction of the triangle АВС

    > draw({T(color=gold,thickness=3)},printtext=true,axes=NONE);     
    Calculation of the distance between heights А and В - the length of a side АВ

    > d1:=distance(A,B);

                               d1 := sqrt(170)

            
            Calculation of the distance between heights В and С - the length of a side ВС
    > d2:=distance(B,C);

                               d2 := sqrt(170)

           The setting of line which passes through two points А and В
    > line(l1,[A,B]);

                                      l1

           Display the equation of line l1
    > Equation(l1);
    > x;
    > y;

                             -2 + 11 x - 7 y = 0

            The setting of line which passes through two points А and С
    > line(l2,[A,C]);

                                      l2

           Display the equation of line l2
    > Equation(l2);
    > x;
    > y;

                              56 - 2 x - 8 y = 0

             The setting of line which passes through two points В and С
    > line(l3,[B,C]);

                                      l3

            Display the equation of line l3
    > Equation(l3);
    > x;
    > y;

                              -44 - 13 x - y = 0

            Check the point А lies on line l1
    > IsOnLine(A,l1);

                                     true

            Check the point А lies on line l1
    > IsOnLine(B,l1);

                                     true

            Calculation of the andle between lines l1 and l2
    > FindAngle(l1,l2);

                                  arctan(3)

            The conversion of result to degrees
    > b1:=convert(arctan(97/14),degrees);

                                          97
                                   arctan(--) degrees
                                          14
                         b1 := 180 ------------------
                                           Pi

            Calculation of decimal value of this angle
    > b2:=evalf(b1);

                          b2 := 81.78721981 degrees

            Calculation of the andle between lines l1 and l3
    > FindAngle(l1,l3);

                                 arctan(3/4)

           The conversion of result to degrees
    > b3:=convert(arctan(97/99),degrees);

                                          97
                                   arctan(--) degrees
                                          99
                         b3 := 180 ------------------
                                           Pi

            Calculation of decimal value of this angle
    > b4:=evalf(b3);

                          b4 := 44.41536947 degrees

           Calculation of the angle between lines l2 and l3
    > FindAngle(l2,l3);

                                  arctan(3)

           The conversion of  result to degrees
    > b5:=convert(arctan(97/71),degrees);

                                          97
                                   arctan(--) degrees
                                          71
                         b5 := 180 ------------------
                                           Pi

            Calculation of decimal value of  this angle
    > b6:=evalf(b5);

                          b6 := 53.79741070 degrees

            Check the sum of all the angles of the triangle
    > b2+b4+b6;

                             180.0000000 degrees

            Analytical information about the point А
    > detail(A);
       name of the object: A
       form of the object: point2d
       coordinates of the point: [4, 6]
              Analytical information about the point В
    > detail(B);
       name of the object: B
       form of the object: point2d
       coordinates of the point: [-3, -5]
              Analytical information about the point С
    > detail(C);
       name of the object: C
       form of the object: point2d
       coordinates of the point: [-4, 8]

       The setting of heights of the triangle points A,B,C and let's call it "Т"

       with(geometry):
    > triangle(ABC, [point(A,7,8), point(B,6,-7), point(C,-6,7)]):
            The setting of the bisector of angle А in triandle АВС
    > bisector(bA, A, ABC);

                                      bA

            Analytical information about the bisector of angle А in the triandle
    > detail(bA);
       name of the object: bA
       form of the object: line2d
       assume that the name of the horizonal and vertical                    axis are _x and _y
       equation of the line: (15*170^(1/2)+226^(1/2))*_x+(-13*226^(1/2)-170^(1/2))*_y+97*226^(1/2)-97*170^(1/2) = 0

            Construction of the triangle
    > draw(ABC,axes=normal,view=[-8..8,-8..8]);

     Construction of the triangle ABC

    > draw({ABC(color=gold,thickness=3)},printtext=true,axes=NONE);     

     Construction of the bisector of angle А

    > draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3)},printtext=true,axes=NONE);    

    The setting of the bisector of angle В in the triangle АВС

    > bisector(bB, B, ABC);

                                      bB

           Analytical information about the bisector of angle B in the triandle
    > detail(bB);
       name of the object: bB
       form of the object: line2d
       assume that the name of the horizonal and vertical                    axis are _x and _y
       equation of the line: (-15*340^(1/2)-14*226^(1/2))*_x+(-12*226^(1/2)+340^(1/2))*_y+97*340^(1/2) = 0

             Construction of the bisector of angle В
    >draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3)},printtext=true,axes=NONE);    



        The setting of the bisector of angle С in the triangle АВС

    > bisector(bC, C, ABC);

                                      bC

            Analytical information about the bisector of angle С in the triangle
    > detail(bC);
       name of the object: bC
       form of the object: line2d
       assume that the name of the horizonal and vertical                    axis are _x and _y
       equation of the line: (14*170^(1/2)-340^(1/2))*_x+(13*340^(1/2)+12*170^(1/2))*_y-97*340^(1/2) = 0

            Construction of the bisector of angle С
    >draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3),bC(color=blue,thickness=3)},printtext=true,axes=NONE);  

     Calculation of the point of intersection of the bisectors and let's call it "О"

    > intersection(O,bA,bB,bC);coordinates(O);

                                      O


         7 sqrt(85) - 3 sqrt(2) sqrt(113) + 3 sqrt(85) sqrt(2)
      [2 -----------------------------------------------------,
           sqrt(85) sqrt(2) + sqrt(2) sqrt(113) + 2 sqrt(85)

              -16 sqrt(85) - 7 sqrt(2) sqrt(113) + 7 sqrt(85) sqrt(2)
            - -------------------------------------------------------]
                 sqrt(85) sqrt(2) + sqrt(2) sqrt(113) + 2 sqrt(85)

           Construction of the bisectors and  marking of the point of intersection  "О" in the triandle
    >draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3),bC(color=blue,thickness=3),O},printtext=true,axes=NONE);
    > restart:
    > with(geometry):
           The setting of the heights of the triangle points A,B,C and let's call it "Т"
    > point(A,7,8),point(B,6,-7),point(C,-6,7);

                                   A, B, C

            Let's call "Т1"
    > triangle(T1,[A,B,C]);

                                      T1

            Construction of "Т1"
    > draw(T1(color=gold,thickness=3),axes=NONE,printtext=true);
      The setting of the median from the point В in the trianglemedian(mB,B,T1,B1);
    > median(mb,B,T1);

                                      mB


                                      mb

            Construction of the median from the point В
    > draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mb},printtext=true,axes=NONE);

    The setting of the median from the point А in the trianglemedian(mA,A,T1,A1);
    > median(ma,A,T1);

                                      mA


                                      ma

            Construction of the median from the point А
    >draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),ma},printtext=true,axes=NONE);
    The setting of the median from the point С in the trianglemedian(mC,C,T1,C1);
    > median(mc,C,T1);

                                      mC


                                      mc

            Costruction of the median from the point С
    >draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),mA,mC(color=maroon,thickness=3)},printtext=true,axes=NONE);




    Calculation of the point of  intersection of the median and let's call it "О"

    >intersection(O,ma,mb,mC);coordinates(O);

                                      O


                                  [7/3, 8/3]

            Construction of medians and marking of the point of  intersection "О" in the triangle
    >draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),mA,mC(color=violet,thickness=3),O},printtext=true,axes=NONE);
    > restart:with(geometry):
    > _EnvHorizontalName:=x:_EnvVerticalName=y:       The setting of the heights of the triangle points A, B, C  and let's call it "Т"
    > triangle(T,[point(A,7,8),point(B,6,-7),point(C,-6,7)]);

                                      T

           Construction of the triangle
    > draw(T,axes=normal,view=[-8..8,-8..8]);


    The setting of the altitude in the triangle from the point Сaltitude(hC1,C,T,C1);
    > altitude(hC,C,T);

                                     hC1


                                      hC

            Analytical information about the altitude hC from the point С in the triangle
    > detail(hC);
       name of the object: hC
       form of the object: line2d
       assume that the name of the horizonal and vertical                    axis are _x and _y
       equation of the line: -99+_x+15*_y = 0

            Construction of the altitude from the point С
    > draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hC},printtext=true,axes=NONE);     

      The setting of the altitude in the triangle from the point Аaltitude(hA1,A,T,A1);
    > altitude(hA,A,T);

                                     hA1


                                      hA

            Analytical information about the altitude hA from the point А in the triangle
    > detail(hA);
       name of the object: hA
       form of the object: line2d
       assume that the name of the horizonal and vertical                    axis are _x and _y
       equation of the line: -28-12*_x+14*_y = 0

            Construction of the altitude from the point А
    >draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hA1},printtext=true,axes=NONE);       The setting of the altitude from the point В

    > altitude(hB1,B,T,B1);
    > altitude(hB,B,T);

                                     hB1


                                      hB

            Analytical information about the altitude hB from the point В in the triangle
    > detail(hB);
       name of the object: hB
       form of the object: line2d
       assume that the name of the horizonal and vertical                    axis are _x and _y
       equation of the line: -71+13*_x+_y = 0

            Consruction of the altitude from the point В
    >draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hB1(color=blue,thickness=3),hB1},printtext=true,axes=NONE);     
     Calculation of the point of intersection of altitudes and let's call it "О"

    >intersection(O,hB,hA,hC);coordinates(O);

                                      O


                                   483  608
                                  [---, ---]
                                   97   97

            Construction of altitudes and marking of the point of intersection "О" in the triangle
    >draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hB1(color=blue,thickness=3),hB1,O},printtext=true,axes=NONE);




     

     

     

     

     

     

     

     

     

     

     

     

     

    Maple T.A. MAA Placement Test Suite  2016 is now available. It leverages all the improvements found in Maple T.A. 2016, including:

    • A redesigned authoring workflow that makes it faster and easier to create and modify questions and assignments
    • A new content repository that makes it substantially easier to manage and search for content
    • New built-in connectivity options for integration with course management systems

    To learn more, visit What’s New in Maple T.A. MAA Placement Test Suite 2016.

    Jonny
    Maplesoft Product Manager, Online Education Products

      Elena, Liya

      "Researching turkish song: the selection of the main element and its graphic transformations",

       Russia, Kazan, school #57

    The setting and visualization of the melodic line of the song
    > restart:
    > with(plots):with(plottools):
    > p0:=plot([[0.5,9],[1,7],[2,9],[4,11],[6,9],[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9],[17,7],[18,9]],color=magenta):p1:=plot([[18,9],[20,11],[22,9],[23,11],[24,9],[26,11],[28,11],[29.5,8],[30,11],[32,9],[33.5,8],[34,9],[36,7],[37.5,5],[38,9],[40,7],[42,5],[44,5],[46,4],[47,5],[48,2],[50,4],[51,5],[51.5,4],[52,2],[54,4],[56,4],[56.5,5],[57,4],[58,5],[60,7],[62,5],[64,7],[66,5]],color=cyan):
    > p2:=plot([[66,5],[68,5],[69,5],[70,4],[71,5],[71.5,4],[72,2],[73,4],[74,5],[75,7],[76,5],[78,4],[78.5,7],[80,5],[82.5,4],[83.5,4],[84,2],[86,4],[88,4],[90.5,4],[91.5,4]],color=red):
    > p3:=plot([[91.5,4],[92,2],[94,4],[96,4],[96.5,9],[97,7],[98,9],[100,11],[100.5,9],[101,11],[102,9],[104,11],[106,9],[108,9],[109,9],[109.5,9],[110,7],[111,9],[112,7],[113,7],[114,9],[116,11],[116.5,9],[117,11],[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9],[126,11],[128,9],[129,7],[130,9],[132,11],[132.5,9],[133,11],[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9],[142,11],[143,7],[143.5,7],[144,9],[144.5,9],[145,7],[146,9],[148,11],[148.5,9],[149,11],[150,9],[151.5,11],[152,9],[154.5,9],[156,9],[156.5,9],[157,11],[157.5,9],[158,11],[160,9],[161,7],[162,9],[164,11],[164.5,9],[165,11],[166,9],[168,11],[168.5,9],[171.5,9],[172,9],[172.5,9],[173.5,11],[174,9],[174.5,11],[175,7],[175.5,7],[176,9],[176.5,9],[177,7],[178,9],[180,11],[180.5,9],[181,11],[182,9],[183.5,11],[184,9],[186.5,9],[188,9],[188.5,9],[189,11],[189.5,9],[190,11],[192,9],[192.5,9],[193,7],[194,9],[196,11],[196.5,9],[197,11],[198,9],[200,11],[201.5,9],[202,11],[203,9],[203.5,8],[204,9],[205,7],[205.5,9],[206,11],[207,9],[208,7],[209,8],[209.5,7],[210,9],[211,7],[212,5],[213,5],[213.5,5],[214,9],[215,7],[216,5],[217,5],[217.5,5],[218,7],[219,5],[220,4],[221,4],[221.5,4],[222,7],[223,5],[224,4],[225,4],[227,4],[227.5,4],[228,2],[230,4]],color=blue):
    > p4:=plot([[230,4],[232,4],[232.5,5],[233,4],[234,5],[236,7],[236.5,5],[237,5],[238,9],[240,7],[242.5,5],[244,5],[245,5],[246,4],[246.5,5],[247,4],[248,2],[250,4],[250.5,7],[251,5],[252,4],[254,4],[254.5,7],[255,5],[256,4],[258,4]],color=brown):
    > p5:=plot([[258,4],[259,4],[260,2]],color=green):
    > plots[display](p0,p1,p2,p3,p4,p5,thickness=2);

     

     

    The selection of the main melodic element in graph of whole song. The whole song is divided into separate elements - results of transformationss0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
    > s1:=plot([[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9]],color=blue):
    > s2:=plot([[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9]],color=blue):
    > s3:=plot([[150,9],[151.5,11],[152,9],[154.5,9],[156,9],[156.5,9],[157,11],[157.5,9]],color=blue):
    > s4:=plot([[166,9],[168,11],[168.5,9],[171.5,9],[172,9],[172.5,9],[173.5,11],[174,9]],color=blue):
    > s5:=plot([[182,9],[183.5,11],[184,9],[186.5,9],[188,9],[188.5,9],[189,11],[189.5,9]],color=blue):
    > s6:=plot([[250,4],[250.5,7],[251,5],[252,4],[254,4],[254.5,7],[255,5],[256,4]],color=blue):
    > plots[display](s0,s1,s2,s3,s4,s5,s6);
    > s:=plots[display](s0,s1,s2,s3,s4,s5,s6):

     

    Animated display of grafical transformation of the basic element (to click on the picture - on the panel of instruments appears player - to play may step by step).m0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
    > pm:=plot([[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9]],color=red,style=line,thickness=4):
    > iop:=plots[display](m0,pm,insequence=true):
    > plots[display](iop,s0);

    > m0_t:=translate(m0,110,0):
    > m0_r:=reflect(m0_t,[[0,9],[24,9]]):
    > plots[display](m0,m0_r,insequence=true);
    > m0r:=plots[display](m0,m0_r,insequence=true):

    > pm0:=plots[display](pm,m0):
    > plots[display](pm0,m0r);

    > m0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
    > pn:=plot([[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9]],color=blue,thickness=3):
    > iop:=plots[display](m0,pn,insequence=true):
    > plots[display](iop,s0);

    > m0_t1:=translate(m0,126,0):
    > m0_r1:=reflect(m0_t1,[[0,9],[24,9]]):
    >
    > plots[display](m0,m0_r1,insequence=true);
    > m0r1:=plots[display](m0,m0_r1,insequence=true):

    > pm01:=plots[display](pn,m0):
    > plots[display](pm01,m0r1);

     

    > pm2:=plots[display](pn,pm,m0):
    > plots[display](pm0,m0r,pm01,m0r1);

    > pt_i_1:=seq(translate(pm,5*11*i,0),i=0..4):
    > plots[display](pt_i_1);

    > pm_i:=seq(translate(pm,5*11*i,0),i=0..4):
    > plots[display](pm_i);
    > iop1:=plots[display](pm_i,insequence=true):
    > plots[display](iop1,s0);

     

    > pm_i_0:=seq(translate(m0_r,5*11*i,0),i=0..4):
    > plots[display](pm_i_0);
    > iop2:=plots[display](pm_i_0,insequence=true):
    > plots[display](iop2,s0);

     

     

     

     

     

     

    Construction of arabesques of melodic line BACH

    Elena, Liya "Construction of arabesques of melodic line BACH", Kazan, Russia, school#57
           
    > restart:
    > with(plots):with(plottools):

          The setting and visualization of line BACH: B - note b-flat, A - note la, C - note do, H - note si.
    > p0:=plot([[0,1],[2,0],[4,1.5],[6,1]],thickness=4,color=cyan,scaling=constrained);
    >
    >   p0 := PLOT(
    >
    >         CURVES([[0, 1.], [2., 0], [4., 1.500000000000000], [6., 1.]])
    >
    >         , SCALING(CONSTRAINED), THICKNESS(4), AXESLABELS( ,  ),
    >
    >         COLOUR(RGB, 0, 1.00000000, 1.00000000),
    >
    >         VIEW(DEFAULT, DEFAULT))
    >
    > plots[display](p0);
    > r_i:=seq(rotate(p0,i*Pi/4),i=1..8):
    > p1:=display(r_i,p0):plots[display](p1,scaling=constrained);

    > c1:=circle([0,0],6,color=blue,thickness=2):
    > plots[display](c1,p1,scaling=constrained);
    > p_c:=plots[display](c1,p1,scaling=constrained):

    > pt_i_2:=seq(translate(p1,0,2*6*i),i=0..4):
    > plots[display](pt_i_2,scaling=constrained);
    > pt_i_22:=seq(translate(p1,0,6*i),i=0..4):
    > plots[display](pt_i_22,scaling=constrained);
    > pt_i_222:=seq(translate(p1,0,1/2*6*i),i=0..4):
    > plots[display](pt_i_222,scaling=constrained);

    > pr:=rotate(p1,Pi/8):
    > plots[display](pr,scaling=constrained);
    > plots[display](p1,pr,scaling=constrained);
    > pr_i:=seq(rotate(p1,Pi/16*i),i=0..8):
    > plots[display](pr_i,scaling=constrained);


    > pt_1:=translate(p1,0,2*6):
    > pr_1_i:=seq(rotate(pt_1,Pi/3.5*i),i=0..6):
    > plots[display](pr_1_i,scaling=constrained);
    > pr_11_i:=seq(rotate(pt_1,Pi/5*i),i=0..10):
    > plots[display](pr_11_i,scaling=constrained);
    > pr_111_i:=seq(rotate(pt_1,Pi/6.5*i),i=0..12):
    > plots[display](pr_111_i,scaling=constrained);


    Elena, Liya "Designing of islamic arabesques", Kazan, Russia, school #57


    > restart:
          At the theorem of cosines  c^2 = a^2+b^2-2*a*b*cos(phi);
          In our case  c=a0 ,  a=1 ,  a=b , phi; - acute angle of a rhombus (the tip of the kalam).
          s0 calculated at theorem of  Pythagoras.
         (а0 - horizontal diagonal of a  rhombus, s0 - vertical diagonal of a  rhombus)
    > a:=1:phi:=Pi/4:
    > a0:=sqrt(a^2+a^2-2*a^2*cos(phi));

                           a0 := sqrt(2 - sqrt(2))

    > solve((s0^2)/4=a^2-(a0^2)/4,s0);

                    sqrt(2 + sqrt(2)), -sqrt(2 + sqrt(2))


          The setting of initial parameters : the size of the tip of the pen-kalam and  depending on its - the main module size - point
           (а0 - horizontal diagonal of a  rhombus, s0 - vertical diagonal of a  rhombus)
    > a0:=sqrt(2-sqrt(2)):
    > s0:=sqrt(2+sqrt(2)):
          Connection the graphical libraries Maple
    > with(plots):with(plottools):
          Construction of unit of measure (point) - rhombus - the tip of the kalam
    > p0:=plot([[0,0],[a0/2,s0/2],[0,s0],[-a0/2,s0/2],[0,0]],scaling=constrained,color=gold,thickness=3):
    > plots[display](p0);

    The setting and construction of altitude of alif - the basis of the rules compilation of the proportions      Example, on style naskh altitude of alif amount five points
    > p_i:=seq(plot([[0,0+s0*i],[a0/2,s0/2+s0*i],[0,s0+s0*i],[-a0/2,s0/2+s0*i],[0,0+s0*i]],scaling=constrained,color=black),i=0..4):
    > pi:=display(p_i):
    > plots[display](p_i);
    The setting of appropriate circle of diameter, amount altitude of alifd0:=s0+s0*i:
    > i:=4:
    > d0:=d0:
    > c0:=circle([0,d0/2],d0/2,color=blue):
    > plots[display](p_i,c0);


    Construction of flower by turning "point"r_i:=seq(rotate(p0,i*Pi/4),i=1..8):
    > p1:=display(r_i,p0):plots[display](p1,scaling=constrained);

     The setting of circumscribed circlec1:=circle([0,0],s0,color=blue,thickness=2):
          Construction and the setting of flower inscribed in a circle
    > plots[display](c1,p1,scaling=constrained);
    > p_c:=plots[display](c1,p1,scaling=constrained):

    The setting and construction of arabesque by horizontal parallel transport original flower with different stepspt_i_1:=seq(translate(p1,5*a0*i,0),i=0..4):
    > plots[display](pt_i_1);
    > pt_i_11:=seq(translate(p1,2*a0*i,0),i=0..4):
    > plots[display](pt_i_11);
    > pt_i_111:=seq(translate(p1,a0*7*i,0),i=0..4):
    > plots[display](pt_i_111);

     The setting and construction of arabesque by vertical parallel transport original flower with different stepspt_i_2:=seq(translate(p1,0,2*s0*i),i=0..4):
    > plots[display](pt_i_2);
    > pt_i_22:=seq(translate(p1,0,s0*i),i=0..4):
    > plots[display](pt_i_22);
    > pt_i_222:=seq(translate(p1,0,1/2*s0*i),i=0..4):
    > plots[display](pt_i_222);
     Getting arabesques by turning original flower on different anglespr:=rotate(p1,Pi/8):
    > plots[display](pr);
    > plots[display](p1,pr);

    > pr_i:=seq(rotate(p1,Pi/16*i),i=0..8):
    > plots[display](pr_i);


    > pt_1:=translate(p1,0,2*s0):
    > pr_1_i:=seq(rotate(pt_1,Pi/3.5*i),i=0..6):
    > plots[display](pr_1_i);
    > pr_11_i:=seq(rotate(pt_1,Pi/5*i),i=0..10):
    > plots[display](pr_11_i);
    > pr_111_i:=seq(rotate(pt_1,Pi/6.5*i),i=0..12):
    > plots[display](pr_111_i);


    Construction of standard quadrilaterals

          Muchametshina Liya,  8th class,  school № 57, Kazan, Russia


                       Square

                      Rectangle     
                      
                      Rhombus        
     
                      Parallelogram

                       Trapeze

    Construction of square

    > restart:
    > with(plottools):
           Сoordinates (x;y) of the lower left corner of the square and the side "а"
    > x:=0;y:=3;a:=6;

                                    x := 0


                                    y := 3


                                    a := 6

          Construction of the square
    > P1:=plot([[x,y],[x,y+a],[x+a,y+a],[x+a,y],[x,y]],color=green,thickness=4):
    > plots[display](P1,scaling=CONSTRAINED);

    The setting of the second square wich moved relative to the first on the vector (2;-3) (vector can be changed) and with side "а-1" (the length of a side can be changed)P2:=plot([[x+2,y-3],[x+2,y-3+a-1],[x+2+a-1,y-3+a-1],[x+2+a-1,y-3],[x+2,y-3]],color=black,thickness=4):
    > plots[display](P1,P2,scaling=CONSTRAINED);

    Construction of rectangle

    > restart:
    > with(plottools):
            Сoordinates (x;y) of the lower left corner of the square and the "а" and "b" sides
    > x:=0;y:=2;a:=3;b:=9;
    >

                                    x := 0


                                    y := 2


                                    a := 3


                                    b := 9

           The rectangle is specified by the sequence of vertices with given the lengths "a" and "b"
    > l:=plot([[x,y],[x,y+a],[x+b,y+a],[x+b,y],[x,y]]):
    > plots[display](l,scaling=CONSTRAINED,thickness=4);
    Construction of rhombus

    > restart:
    > with(plottools):
          The coordinates (x;y) of the initial vertex of the rhombus and the half of the diagonals "a" and "b"
    > x:=0;y:=2;a:=3;b:=4;

                                    x := 0


                                    y := 2


                                    a := 3


                                    b := 4

           Rhombus is specified by the sequence of vertices with the values "a" and "b"
    > ll:=plot([[x,y],[x+a,y+b],[x+a+a,y],[x+a,y-b],[x,y]]):
    > plots[display](ll,scaling=CONSTRAINED,thickness=4);

    Construction of parallelogram

    > restart:
    > with(plottools):
          (х;у) - the starting point, (i;j) - the displacement vector of starting point, "а" - the base of the parallelogram
    > x:=0;y:=0;i:=4;j:=5;a:=10;

                                    x := 0


                                    y := 0


                                    i := 4


                                    j := 5


                                   a := 10

         The parallelogram is defined by the sequence of vertices
    > P1:=plot([[x,y],[x+i,y+j],[x+i+a,y+j],[x+a,y],[x,y]]):
    > plots[display](P1,scaling=CONSTRAINED,thickness=4);
     If  i= 0  it turns out the rectangleget.
           If  j= а  it turns out the  square.
           If  a := sqrt(i^2+j^2) it turns out the rhombus. a:=sqrt(i^2+j^2):

    Construction of trapeze

    Trapeze general form
    > restart:
    > with(plottools):
    >
            (х;у) - the starting point, (i;j) - the displacement vector of starting point, а - the larger base of the trapezoid
    > x:=0;y:=2;i:=1;j:=5;a:=11;

                                    x := 0


                                    y := 2


                                    i := 1


                                    j := 5


                                   a := 11

             The trapez is defined by the sequence of vertices     
    > P1:=plot([[x,y],[x+i,y+j],[x+i+j,y+j],[x+i+a,y],[x,y]]):
    > plots[display](P1,scaling=CONSTRAINED,thickness=4);
    Rectangular trapezoid
    > restsrt:
    > with(plottools):
    > x:=0;y:=2;i:=0;j:=6;a:=11;

                                    x := 0


                                    y := 2


                                    i := 0


                                    j := 6


                                   a := 11

    > P1:=plot([[x,y],[x,y+j],[x+j,y+j],[x+a,y]]):
    > plots[display](P1,scaling=CONSTRAINED,thickness=4);
    Isosceles trapezoid
    > restart:
    > with(plottools):
    > x:=0;y:=2;i:=4;j:=6;a:=15;

                                    x := 0


                                    y := 2


                                    i := 4


                                    j := 6


                                   a := 15

    > P1:=plot([[x,y],[x+i,y+j],[x+j+i,y+j],[x+a,y],[x,y]]):
    > plots[display](P1,scaling=CONSTRAINED,thickness=4);



     

     

     

    Anyone interested in modifying and expanding the Maple FIFA simulation for the Eurocup to include the knockout round?  Any interest?

    > restart;
    > a := -10; b := 10; ps := seq(plot([i, t, t = -20 .. 20], x = -10 .. 10, y = -20 .. 20, color = red, style = point), i = a .. b);

    plots[display](ps, insequence = true); p := plots[display](ps, insequence = true);

     

    restart:
    with(plots):
    y=sin(x);
    p:=implicitplot(y=sin(x),x=-10..10,y=-2..2,thickness=4,color=red,scaling=constrained,numpoints=1000):
    plots[display](p);

     

    y=sin(3*x);
    p0:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=CROSS):
    p1:=implicitplot(y=sin(3*x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
    plots[display](p0,p1);
    y=sin(1/3*x);
    p11:=implicitplot(y=sin(1/3*x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
    plots[display](p0,p11);

     

     

    y=2*sin(x);
    p2:=implicitplot(y=2*sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
    plots[display](p0,p2);
    y=1/2*sin(x);
    p22:=implicitplot(y=1/2*sin(x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
    plots[display](p0,p22);

     

    y=2+sin(x);
    p3:=implicitplot(y=2+sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
    plots[display](p0,p3);
    y=sin(x)-2;
    p33:=implicitplot(y=sin(x)-2,x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
    plots[display](p0,p33);

    y=sin(x+2);
    p4:=implicitplot(y=sin(x+2),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
    plots[display](p0,p4);
    y=sin(x-2);
    p44:=implicitplot(y=sin(x-2),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
    plots[display](p0,p44);

    y=-sin(x);
    p7:=implicitplot(y=-sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
    plots[display](p0,p7);
    y=sin(-x);
    p77:=implicitplot(y=sin(-x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
    plots[display](p0,p77);

     

    y=abs(sin(x));
    p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
    p5:=implicitplot(y=abs(sin(x)),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
    plots[display](p00,p5);
    plots[display](p5,scaling=constrained);

    y=sin(abs(x));
    p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
    p6:=implicitplot(y=sin(abs(x)),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
    plots[display](p00,p6);
    plots[display](p6,scaling=constrained);

     

     

    Post gialid_GEODROMchik - what is this?

    Pilot project of Secondary school # 57 of Kazan, Russia

    Use of Maple

    in Mathematics Education by mathematics teacher Alsu Gibadullina

    and in scientific work of schoolchildren

     

    Examples made using the Maple

    the 6th class

     

                  Arina                         Elza                             David    

           

           Book.mws              Kolobok.mws               sn_angl.mws

     

             Artur    

     

     

    A few people have asked me how I created the sections in the Maple application in this video: https://youtu.be/voohdmfTRn0?t=572

    Here's the worksheet (Maple 2016 only). As you can see, the “sections” look different what you would normally expect (I often like to experiment with small changes in presentation!)

    These aren't, however, sections in the traditional Maple sense; they're a demonstration of Maple 2016's new tools for programmatically changing the properties of a table (including the visibility of its rows and columns). @dskoog gets the credit for showing me the technique.

    Each "section" consists of a table with two rows.

    • The table has a name, specified in its properties.
    • The first row (colored blue) contains (1) a toggle button and (2) the title of each section (with the text in white)
    • The second row (colored white) is visible or invisible based upon the state of the toggle button, and contains the content of my section.

    Each toggle button has

    • a name, specified in its properties
    • + and - images associated with its on and off states (with the image background color matching the color of the first table row)
    • Click action code that enables or disables the visibility of the second row

    The Click action code for the toggle button in the "Pure Fluid Properties" section is, for example,

    tableName:="PureFluidProperties_tb":
    buttonName:="PureFluidProperties_tbt":
    if DocumentTools:-GetProperty(buttonName, 'value') = "false" then   
         DocumentTools:-SetProperty([tableName, 'visible[2..]', true]);
    else
         DocumentTools:-SetProperty([tableName, 'visible[2..]', false]);
    end if;

    As I said at the start, I often try to make worksheets look different to the out-of-the-box defaults. Programmatic table properties have simply given me one more option to play about with.

    Disclaimer: This blog post has been contributed by Prof. Nicola Wilkin, Head of Teaching Innovation (Science), College of Engineering and Physical Sciences and Jonathan Watkins from the University of Birmingham Maple T.A. user group*. 

    Written for Maple T.A. 2016. For Maple T.A. 10 users, this question can be written using the queston designer.

     

    This is the second of three blog posts about working with data sets in Maple.

    In my previous post, I discussed how to use Maple to access a large number of data sets from Quandl, an online data aggregator. In this post, I’ll focus on exploring built-in data sets in Maple.

    Data is being generated at an ever increasing rate. New data is generated every minute, adding to an expanding network of online information. Navigating through this information can be daunting. Simply preparing a tabular data set that collects information from several sources is often a difficult and time consuming effort. For example, even though the example in my previous post only required a couple of lines of Maple code to merge 540 different data sets from various sources, the effort to manually search for and select sources for data took significantly more time.

    In an attempt to make the process of finding data easier, Maple’s built-in country data set collects information on country-specific variables including financial and economic data, as well as information on country codes, population, area, and more.

    The built-in database for Country data can be accessed programmatically by creating a new DataSets Reference:

    CountryData := DataSets:-Reference( "builtin", "country" );

    This returns a Reference object, which can be further interrogated. There are several commands that are applicable to a DataSets Reference, including the following exports for the Reference object:

    exports( CountryData, static );

    The list of available countries in this data set is given using the following:

    GetElementNames( CountryData );

    The available data for each of these countries can be found using:

    GetHeaders( CountryData );

    There are many different data sets available for country data, 126 different variables to be exact. Similar to Maple’s DataFrame, the columns of information in the built-in data set can be accessed used the labelled name.

    For example, the three-letter country codes for each country can be returned using:

    CountryData[.., "3 Letter Country Code"];

    The three-letter country code for Denmark is:

    CountryData["Denmark", "3 Letter Country Code"];

    Built-in data can also be queried in a similar manner to DataFrames. For example, to return the countries with a population density less than 3%:

    pop_density := CountryData[ .., "Population Density" ]:
    pop_density[ `Population Density` < 3 ];

    At this time, Maple’s built-in country data collection contains 126 data sets for 185 countries. When I built the example from my first post, I knew exactly the data sets that I wanted to use and I built a script to collect these into a larger data container. Attempting a similar task using Maple’s built-in data left me with the difficult decision of choosing which data sets to use in my next example.

    So rather than choose between these available options, I built a user interface that lets you quickly browse through all of Maple’s collection of built-in data.

    Using a couple of tricks that I found in the pages for Programmatic Content Generation, I built the interface pictured above. (I’ll give more details on the method that I used to construct the interface in my next post.)

    This interface allows you to select from a list of countries, and visualize up to three variables of the country data with a BubblePlot. Using the preassigned defaults, you can select several countries and then visualize how their overall number of internet users has changed along with their gross domestic product. The BubblePlot visualization also adds a third dimension of information by adjusting the bubble size according to the relative population compared with the other selected countries.

    Now you may notice that the list of available data sets is longer than the list of available options in each of the selection boxes. In order to be able to generate BubblePlot animations, I made an arbitrary choice to filter out any of the built-in data sets that were not of type TimeSeries. This is something that could easily be changed in the code. The choice of a BubblePlot could also be updated to be any other type of Statistical visualization with some additional modifications.

    You can download a copy of this application here: VisualizingCountryDataSets.mw

    You can also interact with it via the MapleCloud: http://maplecloud.maplesoft.com/application.jsp?appId=5743882790764544

    I’ll be following up this post with an in-depth post on how I authored the country selector interface using programmatic content generation.

    First 67 68 69 70 71 72 73 Last Page 69 of 307