Maple 13 Questions and Posts

These are Posts and Questions associated with the product, Maple 13

Hello everyone! I have just started to using Maple 13. I want to solve complex eauation systems.

When I am working on Maple, If I write simple mathematical calculation and then press right click, the context menu open. However, I want to use solve command. Therefore I wrote an eauation after than press right click the context menu will not open. 

What is the reason of this problem? 

Integral is not evaluated. 

 

PROBLE_13.mw

please I need the code to calculate the convergence order of a multipoint iterative method to solve nonlinear equation systems.

 

my email is: yjmsigma@gmail.com

 

In the first one I used hypergeometric function where the number is converged. Now using the series expansion of hypergeometric function I rewrite the equation as in the 2nd and 3rd case. But here it is not converging. I expect the same answer as in the first case i.e 0.14042. Thank you

 

problem2.mw

In the following problem at two example are given. For Z=2 the sum is converging whereas at Z=4 it is not converging. Thank you

 

PROBLEM.mw

how to adjust the height and width of plot in maple 13

plot( x[3]^5, caption = typeset("\n A plot of %1.", x[3]^5), captionfont=[times, 20] );

I want to fetch the trigger time.
I use rhs function.
 

restart; ode := diff(y(x), x) = 1/(y(x)+1); event := [[abs(y(x)+1)-0.1e-1, halt]]

SOL := dsolve([ode, y(0) = 0], numeric, output = listprocedure, range = -10 .. 10, events = event):

Warning, cannot evaluate the solution further left of -.49995006, event #1 triggered a halt

 

``

tlast := rhs(SOL[1](last));

10.

(1)

NULL

x = proc (x) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x) else _xout := evalf(x) end if; _dat := eval(`dsolve/numeric/data/modules`[1]); _solnproc := _dat:-Get("soln_procedure"); _pars := map(rhs, _dat:-Get("params")); if not type(_xout, 'numeric') then if member(x, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(x, 'string')); if type(_res, 'list') then return _res[1] else return NULL end if elif member(x, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[1], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x), 'string') = rhs(x); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 1, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 1, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[1] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[1], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x), 'string') = rhs(x)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat:-Get("sysvars") end if; if procname <> unknown then return ('procname')(x) else _ndsol := `tools/gensym`("x"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat:-Get("soln_procedures")[1])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(x)))) end if end if; try _res := _solnproc(_xout); _res[1] catch: error  end try end proc

(2)

``


 

Download RHS_TEST.mw


 

restart

`ode&lambda;` := diff(lambda(tau), tau, tau)+2*a*Ep(tau)*(diff(lambda(tau), tau))/(Xi(tau)*a+1) = 0:

th := algsubs((diff(lambda(tau), tau))^2 = (-1-(diff(xi(tau), tau))^2)/(-(xi(tau)*a+1)^2), `ode&xi;`):

a*(diff(xi(tau), tau))^2/(xi(tau)*a+1)+diff(diff(xi(tau), tau), tau)+a/(xi(tau)*a+1) = 0

 

a*(diff(xi(tau), tau))^2/(xi(tau)*a+1)+diff(diff(xi(tau), tau), tau)-a/(xi(tau)*a+1) = 0

(1)

ds2 := -(xi(tau)*a+1)^2*(diff(lambda(tau), tau))^2+(diff(xi(tau), tau))^2:

`&lambda;p1` := 1:

`ics&lambda;1` := lambda(0) = 0, (D(lambda))(0) = `&lambda;p1`:

xi(0) = (-1+2^(1/2))/a, (D(xi))(0) = 1

 

xi(0) = 1/a, (D(xi))(0) = 2

(2)

`lp&xi;1` := dsolve([`ode&xi;1`, `ics&xi;1`], numeric, output = listprocedure, range = teu .. te, events = event1); Xi := eval(xi(tau), `lp&xi;1`); `&Xi;p` := eval(diff(xi(tau), tau), `lp&xi;1`); `ode&lambda;`; `lp&lambda;1` := dsolve([`ode&lambda;`, `ics&lambda;1`], numeric, output = listprocedure, range = teu .. te, events = event1)

diff(diff(lambda(tau), tau), tau)+.6*Ep(tau)*(diff(lambda(tau), tau))/(.3*Xi(tau)+1) = 0

 

Error, (in dsolve/numeric/DAE/make_proc) number of unknown functions and equations must match, got 3 functions {Ep, Xi, lambda}, and 1 equations

 

`lp&xi;1`(1)

[tau(1) = 1., (xi(tau))(1) = 2.20293901854199481, (diff(xi(tau), tau))(1) = .670856526448510904]

(3)

`&lambda;ep1` := eval(diff(lambda(tau), tau), lp1); `&xi;ep1` := eval(diff(xi(tau), tau), lp1); `&lambda;e1` := eval(lambda(tau), lp1); `&xi;e1` := eval(xi(tau), lp1)

proc (tau) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](tau) else _xout := evalf(tau) end if; _dat := eval(`dsolve/numeric/data/modules`[1]); _solnproc := _dat:-Get("soln_procedure"); _pars := map(rhs, _dat:-Get("params")); if not type(_xout, 'numeric') then if member(tau, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(tau, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(tau, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(tau, 'string')); if type(_res, 'list') then return _res[4] else return NULL end if elif member(tau, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(tau, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(tau), 'string') = rhs(tau); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 4, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 4, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[4] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(tau), 'string') = rhs(tau)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat:-Get("sysvars") end if; if procname <> unknown then return ('procname')(tau) else _ndsol := `tools/gensym`("xi(tau)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat:-Get("soln_procedures")[4])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(tau)))) end if end if; try _res := _solnproc(_xout); _res[4] catch: error  end try end proc

(4)

`&lambda;ep2` := eval(diff(lambda(tau), tau), lp2); `&xi;ep2` := eval(diff(xi(tau), tau), lp2); `&lambda;e2` := eval(lambda(tau), lp2); `&xi;e2` := eval(xi(tau), lp2)

proc (tau) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](tau) else _xout := evalf(tau) end if; _dat := eval(`dsolve/numeric/data/modules`[2]); _solnproc := _dat:-Get("soln_procedure"); _pars := map(rhs, _dat:-Get("params")); if not type(_xout, 'numeric') then if member(tau, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(tau, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(tau, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(tau, 'string')); if type(_res, 'list') then return _res[4] else return NULL end if elif member(tau, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(tau, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(tau), 'string') = rhs(tau); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 4, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 4, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[4] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(tau), 'string') = rhs(tau)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat:-Get("sysvars") end if; if procname <> unknown then return ('procname')(tau) else _ndsol := `tools/gensym`("xi(tau)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat:-Get("soln_procedures")[4])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(tau)))) end if end if; try _res := _solnproc(_xout); _res[4] catch: error  end try end proc

(5)

ds2h1 := subs([lambda(tau) = `&lambda;e1`(tau), xi(tau) = `&xi;e1`(tau), diff(lambda(tau), tau) = `&lambda;ep1`(tau), diff(xi(tau), tau) = `&xi;ep1`(tau)], ds2); dse1 := unapply(ds2h1, tau); ds2h2 := subs([lambda(tau) = `&lambda;e2`(tau), xi(tau) = `&xi;e2`(tau), diff(lambda(tau), tau) = `&lambda;ep2`(tau), diff(xi(tau), tau) = `&xi;ep2`(tau)], ds2); dse2 := unapply(ds2h2, tau)

dse1(0); dse2(0)

-.999999999

 

1.000000000

(6)

``

t := proc (xi, lambda) options operator, arrow; (xi+1/a)*sinh(a*lambda) end proc; x := proc (xi, lambda) options operator, arrow; (xi+1/a)*cosh(a*lambda) end proc; xi0 := 1; teg := 7

1

 

7

(7)

p1 := plot([[x(xi0, `&lambda;e1`(tau)), t(xi0, `&lambda;e1`(tau)), tau = teu .. te]], legend = ['ds' = -1], color = ["red"]); p2 := plot([[t(xi0, `&lambda;e2`(tau)), x(xi0, `&lambda;e2`(tau)), tau = teu .. te]], legend = ['ds' = 1], color = ["blue"]); p3 := plot([[tau, tau, tau = -teg .. teg], [tau, -tau, tau = -teg .. teg]], color = ["black", "black"], legend = ['ds' = 0, 'ds' = 0])

with(plots); display([p1, p2, p3])

 

NULL

``


 

Download Rindler_simulation_v2.mw

 

Consider for instance the following equation:

Eq:=(a-4)*exp(4*x)+(b+1)*exp(2*x)+(c-2)=0

How can I list the coefficients of the exponential functions and also solve the equation for the constant parameters 

a, b, and c?

I tried 

[coeffs(collect(lhs(EQ), exp), exp)] =~ 0;

but it did not work. Thank you for your help.

1) How can i get the event time. This example 0.69313.

2) I don't want to see the Warning.How can i do it? 

 

Warning, cannot evaluate the solution further right of .69314729, event #1 triggered a halt

Why this event dose'nt work ?
S(t) is a state , a parameter
dsolve(...,numeric,events = [[[s(t), a*arcsinh(2/a) < s(t)], halt]]);

Good evening!!!

Let me briefly describe the problem I've faced recently.

The program (attached) deals with a rather complicated function f depending on parametrs eps1, eps2, eps3, eps4 and variable w. The aim is to expand the function f(w1) into Taylor series with respect to all parametrs (eps1, eps2, eps3, eps4) in order to study its asymptotic behavior as function depending only on k; 0<k<1.

I decided to use mtaylor-function for that problem, which (as I've understood) is the only one to be applied in such cases, but the result was rather unsatisfactory, an error: 

Error, (in gcd/LinZip) input must be polynomials over the integers

Programm code: (1)-(12) only announcing functions....(((, see below
 

f := proc (w) options operator, arrow; -B1+(A1-C1)*w+(B1-D1)*w^2-A1*w^3 end proc

proc (w) options operator, arrow; -B1+(A1-C1)*w+(B1-D1)*w^2-A1*w^3 end proc

(1)

f1 := proc (w) options operator, arrow; A1-C1+(2*B1-2*D1)*w-3*A1*w^2 end proc

proc (w) options operator, arrow; A1-C1+(2*B1-2*D1)*w-3*A1*w^2 end proc

(2)

w1 := (B1-D1+sqrt((B1-D1)^2+3*A1*(A1-C1)))/(3*A1)

(1/3)*(B1-D1+(B1^2-2*B1*D1+D1^2+3*A1^2-3*A1*C1)^(1/2))/A1

(3)

f(w1)

-B1+(1/3)*(A1-C1)*(B1-D1+(B1^2-2*B1*D1+D1^2+3*A1^2-3*A1*C1)^(1/2))/A1+(1/9)*(B1-D1)*(B1-D1+(B1^2-2*B1*D1+D1^2+3*A1^2-3*A1*C1)^(1/2))^2/A1^2-(1/27)*(B1-D1+(B1^2-2*B1*D1+D1^2+3*A1^2-3*A1*C1)^(1/2))^3/A1^2

(4)

s := eps4*sin(l*tau)+(4*(l*sqrt(k/(1-k))+l*eps3)+2*l*((1-2*k)/sqrt(k*(1-k))+eps1))/l^2

eps4*sin(l*tau)+(4*l*(k/(1-k))^(1/2)+4*l*eps3+2*l*((1-2*k)/(k*(1-k))^(1/2)+eps1))/l^2

(5)

A1 := (2*(l*sqrt(k/(1-k))+l*eps3)+l*((1-2*k)/sqrt(k*(1-k))+eps1))/s

(2*l*(k/(1-k))^(1/2)+2*l*eps3+l*((1-2*k)/(k*(1-k))^(1/2)+eps1))/(eps4*sin(l*tau)+(4*l*(k/(1-k))^(1/2)+4*l*eps3+2*l*((1-2*k)/(k*(1-k))^(1/2)+eps1))/l^2)

(6)

A1 := (2*(l*sqrt(k/(1-k))+l*eps3)+l*((1-2*k)/sqrt(k*(1-k))+eps1))/s

(2*l*(k/(1-k))^(1/2)+2*l*eps3+l*((1-2*k)/(k*(1-k))^(1/2)+eps1))/(eps4*sin(l*tau)+(4*l*(k/(1-k))^(1/2)+4*l*eps3+2*l*((1-2*k)/(k*(1-k))^(1/2)+eps1))/l^2)

(7)

B1 := 4/s^2

4/(eps4*sin(l*tau)+(4*l*(k/(1-k))^(1/2)+4*l*eps3+2*l*((1-2*k)/(k*(1-k))^(1/2)+eps1))/l^2)^2

(8)

C1 := (((1-2*k)/sqrt(k*(1-k))+eps1)^2+(-(1-2*k)/sqrt(k*(1-k))+eps2)^2)/s^2

(((1-2*k)/(k*(1-k))^(1/2)+eps1)^2+(-(1-2*k)/(k*(1-k))^(1/2)+eps2)^2)/(eps4*sin(l*tau)+(4*l*(k/(1-k))^(1/2)+4*l*eps3+2*l*((1-2*k)/(k*(1-k))^(1/2)+eps1))/l^2)^2

(9)

D1 := (2*((1-2*k)/sqrt(k*(1-k))+eps1))*(-(1-2*k)/sqrt(k*(1-k))+eps2)/s^2

2*((1-2*k)/(k*(1-k))^(1/2)+eps1)*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)/(eps4*sin(l*tau)+(4*l*(k/(1-k))^(1/2)+4*l*eps3+2*l*((1-2*k)/(k*(1-k))^(1/2)+eps1))/l^2)^2

(10)

l := 1

1

(11)

f(w1)

-4/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2+(1/3)*((2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)-(((1-2*k)/(k*(1-k))^(1/2)+eps1)^2+(-(1-2*k)/(k*(1-k))^(1/2)+eps2)^2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2)*(4/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2-2*((1-2*k)/(k*(1-k))^(1/2)+eps1)*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2+(16/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4-16*((1-2*k)/(k*(1-k))^(1/2)+eps1)*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4+4*((1-2*k)/(k*(1-k))^(1/2)+eps1)^2*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)^2/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4+3*(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)^2/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2-3*(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)*(((1-2*k)/(k*(1-k))^(1/2)+eps1)^2+(-(1-2*k)/(k*(1-k))^(1/2)+eps2)^2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^3)^(1/2))*(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)/(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)+(1/9)*(4/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2-2*((1-2*k)/(k*(1-k))^(1/2)+eps1)*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2)*(4/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2-2*((1-2*k)/(k*(1-k))^(1/2)+eps1)*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2+(16/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4-16*((1-2*k)/(k*(1-k))^(1/2)+eps1)*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4+4*((1-2*k)/(k*(1-k))^(1/2)+eps1)^2*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)^2/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4+3*(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)^2/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2-3*(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)*(((1-2*k)/(k*(1-k))^(1/2)+eps1)^2+(-(1-2*k)/(k*(1-k))^(1/2)+eps2)^2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^3)^(1/2))^2*(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2/(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)^2-(1/27)*(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2*(4/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2-2*((1-2*k)/(k*(1-k))^(1/2)+eps1)*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2+(16/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4-16*((1-2*k)/(k*(1-k))^(1/2)+eps1)*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4+4*((1-2*k)/(k*(1-k))^(1/2)+eps1)^2*(-(1-2*k)/(k*(1-k))^(1/2)+eps2)^2/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^4+3*(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)^2/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^2-3*(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)*(((1-2*k)/(k*(1-k))^(1/2)+eps1)^2+(-(1-2*k)/(k*(1-k))^(1/2)+eps2)^2)/(eps4*sin(tau)+4*(k/(1-k))^(1/2)+4*eps3+2*(1-2*k)/(k*(1-k))^(1/2)+2*eps1)^3)^(1/2))^3/(2*(k/(1-k))^(1/2)+2*eps3+(1-2*k)/(k*(1-k))^(1/2)+eps1)^2

(12)

assume(0 < k and k < 1)

mtaylor(f(w1), [eps1, eps2, eps3, eps4], 2)

Error, (in gcd/LinZip) input must be polynomials over the integers

 

``


Wish you could give some advice on how to improve the situation.

Thanks a lot in advance.

Download res2.mw

 

 

How can I run Maple Script ,hold it and continue to run it ?
Somethink like Matlab pause statment

 

Tank you

I have this maple code:
I want to change

back to α. How can i do it ? (it don't work with unprotect)

 

 

I do the numerical simulation with

lp:=dsolve(....,type = numeric, range = ta .. te)

The simulation stop at t=te .

I want to stop the simulation when e.g. x(t) < 0

How can i do it ?

 

1 2 3 4 5 6 7 Last Page 1 of 46