Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18

How does one adjust the aspect ratio for Maple plot? I actually searched for aspect ratio for Maple on google and not able to find much of anything. Help does not have such phrase. May be it called something else in Maple? The reason I ask, is that when I change the size of bode plot, the aspect ratio become bad. So I need a way to adjust that. Here is an example

restart:
alias(DS=DynamicSystems):
sys:=DS:-TransferFunction(5*s/(s^2+4*s+25)):
DS:-BodePlot(sys,range=0.1..100);

Now if I do

DS:-BodePlot(sys,range=0.1..100,size=[300,"default"]);

I am finding so many problems with Bodeplot in Maple, but this is for another time. I think it needs much more polishing

Maple 18, windows 7

with(LinearAlgebra):
a:=Vector([1,2]);
b:=Matrix([[1,2],[1,2]]);

Say if I need a^T * b * a, I will do this:

VectorMatrixMultiply(Transpose(a), b);
VectorMatrixMultiply(%, a);

But this seems too long for such a simple matrix (and vector) computation. I am sure there must be an short way.

What if I need more computation, like

 

a^T * b * c*d*f*g* a, where c,d,f,g are other 2x2 matrices.
 If I were to use the above command, that'll take a long time to input.

Thanks,

f:=x+y+y;

diff(f,x);
diff(f,y);
diff(f,z);

What I hope to get is a vector with i-th entry being the dervative of f, differentiated w.r.s.t the i-th parameter, like this

Vector([1,1,1]);

 

Is there a more efficient (built-in) command to do this?

 

VectorCalculus[diff] does not do what I want.

 

Thanks,

 

casper

 

Hi Maple friends.

I have a plot. I click on the plot, and the blue border appears the around the plot. I press the delete key on my keyboard, and the plot is not deleted. Not deleted when I press the backspace key either. I can right-click on the plot and choose 'cut', but that just copies the plot to the clipboard.

So how can I delete a plot from the worksheet, without deleting anything else?

Thanks in advance.

Hi Maple friends.

I am trying to differentiate these:

1. csc(x)/x

2. 3*x^2*cot(x)

From doing it by hand, I am getting:

1. -cosec(x)*(xcot(x) + 1)

2. 6x*cot(x) - 3x^2*cosec^2(x)

But Maple is giving the answer:

1. diff(csc(x)/x, x);

-csc(x)*cot(x)/x-csc(x)/x^2

2. diff(3*x^2*cot(x), x);

6*x*cot(x)+3*x^2*(-1-cot(x)^2)

My answers don't look like Maple's answers. Are they actually the same?

Thanks in advance.

 

Whenever i open Maple 18, some symbols are missing including the arrows. I use Maple 18 to do math assingments, and the arrows are useful. It seems like a lot of other content is missing in Maple 18 as well. Below is a picture of the missing symbols, or there should be one. Any help on how i get the arrows back, would be amazing.

Symbols missing

Here is my code & the error mesage.  What's wrong?

 

with(Statistics);
X := Vector*([0, 5, 10, 15, 20, 25, 30], datatype = float);
Y := Vector*([38.8, 53.8, 82.4, 107.6, 130.7, 152.4, 173.2], datatype = float);
NonlinearFit(av^2+bv+c, X, Y, v);
Error, (in Statistics:-NonlinearFit) invalid input: PostProcessData expects its 1st argument, x, to be of type {array, list, rtable}, but received w

Hello,

It seems that the command vrml is long gone (I have a lot of worksheets using this "command") and

has been replaced by saving  a graphic in x3d format.

That's ok I have a x3d renderer but the quality of Maple for the x3d format in not very good (for the moment).

Please reintroduce vrml :-)

 

Jean-Michel Collard

 

for example i want to save the Square root of 2 to 1000000 decimal place to an ascii text file ...

i used the writeto command after evalf[100](sqrt(2)) for but it contains line breaks and \ character in output !

but i only need the pure continues 1000000 digits !

please guide me on this simple request ?

Hi Maple friends.

If I have a table of values, how can Maple provide the function?

For example:

x=10,15,20,25,30,35,40

y=2.01,4.87,6.50,9.875,14.00,18.90,24.40

How can Maple find out the y function with respect to x? 

Thanks in advance.

Hi all,

 

Sorry if the question of the title wasn't very clear. I am not sure how to express it correctly.

But here is what I do for linux,

and I get

 

So when I submitted a lot of jobs, I can see the arguments that was passed to it. I can easily kill a process.

 

How do I do that in windows if anyone knows?

Here is a screenshot from windows task manager:

 

That does not give informative details, just like the 'top' command in linux.

 

Thanks,

How to make Decimal number in maple by default? 

How to make radian to degrees? Think It is like this "degcos" but I cant see the correct result, because it is not showed in decimals

Why do I have to active all my varibles when I open the document after I have saved it?

 

Regards

Østerbro

Does anyone have JavaViewLib running on Maple 18?  Could you help me out?  I can't get it running and I really need a way to export some 3d plots to a web page where a colleague can view them (rotate and such).

Thanks, Chad.

Hello everyone,

I'm trying to do some fitting using NonlinearFit, for the coefficients I know in advance, that they have to fulfill a condition (a+b>c+1). I couldn't find a way to make Maple take this condition into consideration while fitting my data. I tried to use Parameterrange to make the difference a+b-c+1 positive, this works for linear conditions like mine but leads to computational difficulties and errors like "no improved point could be found".

Thanks in advance,

Sören

Here is an example of manipulating an Array of pixels. I chose the x-rite ColorChecker as a model so there would be published results to check my work. A number of details about color spaces have become clear through this exercise. The color adaptation process was modeled by converting betweenXYZ and LMS. Different black points may be selected depending on how close to zero illuminance one would accept as a good model. 

I look forward to extending this work to verify and improve the color calibration of my photography. Also some experimentation with demosaicing should be possible.

Initialization

 

restart

with(LinearAlgebra):

unprotect(gamma):``

NULL

x-rite Colorchecker xyY Matrix

  CCxyY_D50 := Matrix(4, 6, {(1, 1) = Vector(3, {(1) = .4316, (2) = .3777, (3) = .1008}), (1, 2) = Vector(3, {(1) = .4197, (2) = .3744, (3) = .3495}), (1, 3) = Vector(3, {(1) = .2760, (2) = .3016, (3) = .1836}), (1, 4) = Vector(3, {(1) = .3703, (2) = .4499, (3) = .1325}), (1, 5) = Vector(3, {(1) = .2999, (2) = .2856, (3) = .2304}), (1, 6) = Vector(3, {(1) = .2848, (2) = .3911, (3) = .4178}), (2, 1) = Vector(3, {(1) = .5295, (2) = .4055, (3) = .3118}), (2, 2) = Vector(3, {(1) = .2305, (2) = .2106, (3) = .1126}), (2, 3) = Vector(3, {(1) = .5012, (2) = .3273, (3) = .1938}), (2, 4) = Vector(3, {(1) = .3319, (2) = .2482, (3) = 0.637e-1}), (2, 5) = Vector(3, {(1) = .3984, (2) = .5008, (3) = .4446}), (2, 6) = Vector(3, {(1) = .4957, (2) = .4427, (3) = .4357}), (3, 1) = Vector(3, {(1) = .2018, (2) = .1692, (3) = 0.575e-1}), (3, 2) = Vector(3, {(1) = .3253, (2) = .5032, (3) = .2318}), (3, 3) = Vector(3, {(1) = .5686, (2) = .3303, (3) = .1257}), (3, 4) = Vector(3, {(1) = .4697, (2) = .4734, (3) = .5981}), (3, 5) = Vector(3, {(1) = .4159, (2) = .2688, (3) = .2009}), (3, 6) = Vector(3, {(1) = .2131, (2) = .3023, (3) = .1930}), (4, 1) = Vector(3, {(1) = .3469, (2) = .3608, (3) = .9131}), (4, 2) = Vector(3, {(1) = .3440, (2) = .3584, (3) = .5894}), (4, 3) = Vector(3, {(1) = .3432, (2) = .3581, (3) = .3632}), (4, 4) = Vector(3, {(1) = .3446, (2) = .3579, (3) = .1915}), (4, 5) = Vector(3, {(1) = .3401, (2) = .3548, (3) = 0.883e-1}), (4, 6) = Vector(3, {(1) = .3406, (2) = .3537, (3) = 0.311e-1})})

NULL

NULL

M := RowDimension(CCxyY_D50) = 4NULL

N := ColumnDimension(CCxyY_D50) = 6

NULL

Convert xyY to XYZ

   

NULL

CCXYZ_D50 := C_xyY_to_XYZ(CCxyY_D50):

CCXYZ_D50 = Matrix(4, 6, {(1, 1) = Vector(3, {(1) = .1152, (2) = .1008, (3) = 0.509e-1}), (1, 2) = Vector(3, {(1) = .3918, (2) = .3495, (3) = .1922}), (1, 3) = Vector(3, {(1) = .1680, (2) = .1836, (3) = .2571}), (1, 4) = Vector(3, {(1) = .1091, (2) = .1325, (3) = 0.529e-1}), (1, 5) = Vector(3, {(1) = .2419, (2) = .2304, (3) = .3344}), (1, 6) = Vector(3, {(1) = .3042, (2) = .4178, (3) = .3462}), (2, 1) = Vector(3, {(1) = .4071, (2) = .3118, (3) = 0.500e-1}), (2, 2) = Vector(3, {(1) = .1232, (2) = .1126, (3) = .2988}), (2, 3) = Vector(3, {(1) = .2968, (2) = .1938, (3) = .1015}), (2, 4) = Vector(3, {(1) = 0.852e-1, (2) = 0.637e-1, (3) = .1078}), (2, 5) = Vector(3, {(1) = .3537, (2) = .4446, (3) = 0.895e-1}), (2, 6) = Vector(3, {(1) = .4879, (2) = .4357, (3) = 0.606e-1}), (3, 1) = Vector(3, {(1) = 0.686e-1, (2) = 0.575e-1, (3) = .2138}), (3, 2) = Vector(3, {(1) = .1498, (2) = .2318, (3) = 0.790e-1}), (3, 3) = Vector(3, {(1) = .2164, (2) = .1257, (3) = 0.385e-1}), (3, 4) = Vector(3, {(1) = .5934, (2) = .5981, (3) = 0.719e-1}), (3, 5) = Vector(3, {(1) = .3108, (2) = .2009, (3) = .2356}), (3, 6) = Vector(3, {(1) = .1360, (2) = .1930, (3) = .3094}), (4, 1) = Vector(3, {(1) = .8779, (2) = .9131, (3) = .7397}), (4, 2) = Vector(3, {(1) = .5657, (2) = .5894, (3) = .4894}), (4, 3) = Vector(3, {(1) = .3481, (2) = .3632, (3) = .3029}), (4, 4) = Vector(3, {(1) = .1844, (2) = .1915, (3) = .1592}), (4, 5) = Vector(3, {(1) = 0.846e-1, (2) = 0.883e-1, (3) = 0.759e-1}), (4, 6) = Vector(3, {(1) = 0.299e-1, (2) = 0.311e-1, (3) = 0.269e-1})})NULL

XYZ D50 to XYZ D65

   

NULL

CCXYZ_D65 := XYZ_D50_to_D65(CCXYZ_D50):

CCXYZ_D65 = Matrix(4, 6, {(1, 1) = Vector(3, {(1) = .1110, (2) = 0.996e-1, (3) = 0.670e-1}), (1, 2) = Vector(3, {(1) = .3785, (2) = .3459, (3) = .2533}), (1, 3) = Vector(3, {(1) = .1726, (2) = .1861, (3) = .3403}), (1, 4) = Vector(3, {(1) = .1045, (2) = .1318, (3) = 0.690e-1}), (1, 5) = Vector(3, {(1) = .2470, (2) = .2329, (3) = .4430}), (1, 6) = Vector(3, {(1) = .3030, (2) = .4206, (3) = .4556}), (2, 1) = Vector(3, {(1) = .3850, (2) = .3044, (3) = 0.651e-1}), (2, 2) = Vector(3, {(1) = .1340, (2) = .1165, (3) = .3966}), (2, 3) = Vector(3, {(1) = .2855, (2) = .1895, (3) = .1347}), (2, 4) = Vector(3, {(1) = 0.867e-1, (2) = 0.642e-1, (3) = .1431}), (2, 5) = Vector(3, {(1) = .3334, (2) = .4409, (3) = .1142}), (2, 6) = Vector(3, {(1) = .4600, (2) = .4275, (3) = 0.777e-1}), (3, 1) = Vector(3, {(1) = 0.777e-1, (2) = 0.606e-1, (3) = .2839}), (3, 2) = Vector(3, {(1) = .1428, (2) = .2315, (3) = .1022}), (3, 3) = Vector(3, {(1) = .2063, (2) = .1216, (3) = 0.512e-1}), (3, 4) = Vector(3, {(1) = .5578, (2) = .5888, (3) = 0.906e-1}), (3, 5) = Vector(3, {(1) = .3073, (2) = .1990, (3) = .3131}), (3, 6) = Vector(3, {(1) = .1451, (2) = .1976, (3) = .4092}), (4, 1) = Vector(3, {(1) = .8646, (2) = .9129, (3) = .9759}), (4, 2) = Vector(3, {(1) = .5579, (2) = .5895, (3) = .6458}), (4, 3) = Vector(3, {(1) = .3434, (2) = .3633, (3) = .3997}), (4, 4) = Vector(3, {(1) = .1818, (2) = .1915, (3) = .2100}), (4, 5) = Vector(3, {(1) = 0.836e-1, (2) = 0.884e-1, (3) = .1002}), (4, 6) = Vector(3, {(1) = 0.296e-1, (2) = 0.311e-1, (3) = 0.355e-1})})

NULL

NULLConvert XYZ to Lab (D50 or D65 White Point)

 

NULLNULL

Reference White Point for D50

NULL

X_D50wht := XYZ_D50wht[1] = .96422NULL

Y_D50wht := XYZ_D50wht[2] = 1NULL

Z_D50wht := XYZ_D50wht[3] = .82521

NULL

Lab Conversion Constants;

`ε` := 216/24389:

kappa := 24389/27:

NULL

fx_D50 := proc (XYZ) options operator, arrow; piecewise(`&epsilon;` < XYZ[1]/X_D50wht, (XYZ[1]/X_D50wht)^(1/3), XYZ[1]/X_D50wht <= `&epsilon;`, (1/116)*kappa*XYZ[1]/X_D50wht+4/29) end proc
                

NULLNULL

NULL

 
fy_D50 := proc (XYZ) options operator, arrow; piecewise(`&epsilon;` < XYZ[2]/Y_D50wht, (XYZ[2]/Y_D50wht)^(1/3), XYZ[2]/Y_D50wht <= `&epsilon;`, (1/116)*kappa*XYZ[2]/Y_D50wht+4/29) end proc
NULLNULL

NULLNULL

fz_D50 := proc (XYZ) options operator, arrow; piecewise(`&epsilon;` < XYZ[3]/Z_D50wht, (XYZ[3]/Z_D50wht)^(1/3), XYZ[3]/Z_D50wht <= `&epsilon;`, (1/116)*kappa*XYZ[3]/Z_D50wht+4/29) end proc
NULL

XYZ_to_Lab_D50 := proc (XYZ) options operator, arrow; `<,>`(116*fy_D50(XYZ)-16, 500*fx_D50(XYZ)-500*fy_D50(XYZ), 200*fy_D50(XYZ)-200*fz_D50(XYZ)) end proc:

NULL

Reference White Point for D65

NULL

X_D65wht := XYZ_D65wht[1] = .95047NULL

Y_D65wht := XYZ_D65wht[2] = 1NULL

Z_D65wht := XYZ_D65wht[3] = 1.08883 

NULL

NULL

NULL

NULL

NULL

NULL

NULL

fx_D65 := proc (XYZ) options operator, arrow; piecewise(`&epsilon;` < XYZ[1]/X_D65wht, (XYZ[1]/X_D65wht)^(1/3), XYZ[1]/X_D65wht <= `&epsilon;`, (1/116)*kappa*XYZ[1]/X_D65wht+4/29) end proc
                

NULLNULL

NULL

 
fy_D65 := proc (XYZ) options operator, arrow; piecewise(`&epsilon;` < XYZ[2]/Y_D65wht, (XYZ[2]/Y_D65wht)^(1/3), XYZ[2]/Y_D65wht <= `&epsilon;`, (1/116)*kappa*XYZ[2]/Y_D65wht+4/29) end proc
NULLNULL

NULLNULL

fz_D65 := proc (XYZ) options operator, arrow; piecewise(`&epsilon;` < XYZ[3]/Z_D65wht, (XYZ[3]/Z_D65wht)^(1/3), XYZ[3]/Z_D65wht <= `&epsilon;`, (1/116)*kappa*XYZ[3]/Z_D65wht+4/29) end proc
NULL

XYZ_to_Lab_D65 := proc (XYZ) options operator, arrow; `<,>`(116*fy_D65(XYZ)-16, 500*fx_D65(XYZ)-500*fy_D65(XYZ), 200*fy_D65(XYZ)-200*fz_D65(XYZ)) end proc:

NULL

NULL

 

NULL

C_XYZ_to_Lab := proc (XYZ, L) options operator, arrow; piecewise(evalb(L = D50), Array([`$`('[`$`('XYZ_to_Lab_D50(XYZ[m, n])', n = 1 .. N)]', m = 1 .. M)]), evalb(L = D65), Array([`$`('[`$`('XYZ_to_Lab_D65(XYZ[m, n])', n = 1 .. N)]', m = 1 .. M)])) end proc
 NULL

NULL

NULLNULL

NULL

CCLab_D50 := C_XYZ_to_Lab(CCXYZ_D50, D50): NULL

CCLab_D50 = Matrix(4, 6, {(1, 1) = Vector(3, {(1) = 37.99, (2) = 13.55, (3) = 14.06}), (1, 2) = Vector(3, {(1) = 65.71, (2) = 18.14, (3) = 17.82}), (1, 3) = Vector(3, {(1) = 49.93, (2) = -4.91, (3) = -21.92}), (1, 4) = Vector(3, {(1) = 43.14, (2) = -13.10, (3) = 21.89}), (1, 5) = Vector(3, {(1) = 55.11, (2) = 8.84, (3) = -25.39}), (1, 6) = Vector(3, {(1) = 70.72, (2) = -33.39, (3) = -.21}), (2, 1) = Vector(3, {(1) = 62.66, (2) = 36.06, (3) = 57.08}), (2, 2) = Vector(3, {(1) = 40.01, (2) = 10.42, (3) = -45.98}), (2, 3) = Vector(3, {(1) = 51.13, (2) = 48.24, (3) = 16.26}), (2, 4) = Vector(3, {(1) = 30.33, (2) = 23.00, (3) = -21.59}), (2, 5) = Vector(3, {(1) = 72.53, (2) = -23.70, (3) = 57.27}), (2, 6) = Vector(3, {(1) = 71.94, (2) = 19.37, (3) = 67.86}), (3, 1) = Vector(3, {(1) = 28.77, (2) = 14.17, (3) = -50.30}), (3, 2) = Vector(3, {(1) = 55.26, (2) = -38.32, (3) = 31.36}), (3, 3) = Vector(3, {(1) = 42.11, (2) = 53.38, (3) = 28.20}), (3, 4) = Vector(3, {(1) = 81.73, (2) = 4.03, (3) = 79.85}), (3, 5) = Vector(3, {(1) = 51.94, (2) = 50.00, (3) = -14.57}), (3, 6) = Vector(3, {(1) = 51.04, (2) = -28.65, (3) = -28.63}), (4, 1) = Vector(3, {(1) = 96.54, (2) = -.46, (3) = 1.19}), (4, 2) = Vector(3, {(1) = 81.26, (2) = -.64, (3) = -.35}), (4, 3) = Vector(3, {(1) = 66.76, (2) = -.72, (3) = -.51}), (4, 4) = Vector(3, {(1) = 50.86, (2) = -.14, (3) = -.28}), (4, 5) = Vector(3, {(1) = 35.65, (2) = -.44, (3) = -1.23}), (4, 6) = Vector(3, {(1) = 20.48, (2) = -0.7e-1, (3) = -.98})})NULL

NULL

Convert XYZ to aRGB (XYZ D50 or D65 to aRGB D65)

 

XYZ Scaling for aRGB Ymax,Ymin (Ref. Adobe RGB (1998) Color Image Encoding Section 4.3.2.2 and 4.3.8)

NULL

White Point (Luminance=160Cd/m^2) D65

Black Point (Luminance=0.5557Cd/m^2) D65

White Point (Luminance=160Cd/m^2) D50

Black Point (Luminance=0.5557Cd/m^2) D50

XW_D65 := 152.07*(1/160) = .9504375000NULL

YW_D65 := 160*(1/160) = 1``

ZW_D65 := 174.25*(1/160) = 1.089062500``

NULL

xXK_D65 := .5282*(1/160) = 0.3301250000e-2``

xYK_D65 := .5557*(1/160) = 0.3473125000e-2``

xZK_D65 := .6025*(1/160) = 0.3765625000e-2``

XK_D65 := 0:

YK_D65 := 0:

ZK_D65 := 0:

``

``

XW_D50 := .9462:NULL

YW_D50 := 1.0000:

ZW_D50 := .8249:

``

NULL

xXK_D50 := 0.33488e-2:

xYK_D50 := 0.34751e-2:

xZK_D50 := 0.28650e-2:

``

XK_D50 := 0:

YK_D50 := 0:

ZK_D50 := 0:

NULL

 

NULL

XYZD65_to_aXYZ := proc (XYZ) options operator, arrow; `<,>`((XYZ[1]-XK_D65)*XW_D65/((XW_D65-XK_D65)*YW_D65), (XYZ[2]-YK_D65)/(YW_D65-YK_D65), (XYZ[3]-ZK_D65)*ZW_D65/((ZW_D65-ZK_D65)*YW_D65)) end proc:

XYZD50_to_aXYZ := proc (XYZ) options operator, arrow; `<,>`((XYZ[1]-XK_D50)*XW_D50/((XW_D50-XK_D50)*YW_D50), (XYZ[2]-YK_D50)/(YW_D50-YK_D50), (XYZ[3]-ZK_D50)*ZW_D50/((ZW_D50-ZK_D50)*YW_D50)) end proc:

 

NULL

(ref. Adobe RGB(1998) section 4.3.6.1, Bradford Matrix includes D50 to D65 adaptation)

M_XYZtoaRGB_D50 := Matrix(3, 3, {(1, 1) = 1.96253, (1, 2) = -.61068, (1, 3) = -.34137, (2, 1) = -.97876, (2, 2) = 1.91615, (2, 3) = 0.3342e-1, (3, 1) = 0.2869e-1, (3, 2) = -.14067, (3, 3) = 1.34926})

  aXYZ_to_RGB_D50 := proc (aXYZ) options operator, arrow; `<,>`(Typesetting:-delayDotProduct(M_XYZtoaRGB_D50, aXYZ)) end proc: NULL

 

(ref. Adobe RBG(1998) section 4.3.4.1, Bradford Matrix assumes XYZ is D65)

M_XYZtoaRGB_D65 := Matrix(3, 3, {(1, 1) = 2.04159, (1, 2) = -.56501, (1, 3) = -.34473, (2, 1) = -.96924, (2, 2) = 1.87597, (2, 3) = 0.4156e-1, (3, 1) = 0.1344e-1, (3, 2) = -.11836, (3, 3) = 1.01517})

  NULL

aXYZ_to_RGB_D65 := proc (aXYZ) options operator, arrow; `<,>`(Typesetting:-delayDotProduct(M_XYZtoaRGB_D65, aXYZ)) end proc:

NULL

  aRGB Expansion for 8bits

 

`&gamma;a` := 2.19921875:

RGB_to_aRGB := proc (RGB) options operator, arrow; `<,>`(round(255*Norm(RGB[1])^(1/`&gamma;a`)), round(255*Norm(RGB[2])^(1/`&gamma;a`)), round(255*Norm(RGB[3])^(1/`&gamma;a`))) end proc:
NULL

 

Combine Steps

NULL

XYZ_to_aRGB := proc (XYZ, L) options operator, arrow; piecewise(evalb(L = D50), Array([`$`('[`$`('RGB_to_aRGB(aXYZ_to_RGB_D50(XYZD50_to_aXYZ(XYZ[m, n])))', n = 1 .. N)]', m = 1 .. M)]), evalb(L = D65), Array([`$`('[`$`('RGB_to_aRGB(aXYZ_to_RGB_D65(XYZD65_to_aXYZ(XYZ[m, n])))', n = 1 .. N)]', m = 1 .. M)])) end proc

NULLNULL

NULLNULL

Note: The aRGB values published for ColorChecker assume a black point of 0cd/m^2.

````

aRGB_D50in := XYZ_to_aRGB(CCXYZ_D50, D50):

aRGB_D50in = Matrix(4, 6, {(1, 1) = Vector(3, {(1) = 107, (2) = 82, (3) = 70}), (1, 2) = Vector(3, {(1) = 184, (2) = 146, (3) = 128}), (1, 3) = Vector(3, {(1) = 101, (2) = 122, (3) = 153}), (1, 4) = Vector(3, {(1) = 95, (2) = 107, (3) = 69}), (1, 5) = Vector(3, {(1) = 128, (2) = 127, (3) = 173}), (1, 6) = Vector(3, {(1) = 129, (2) = 188, (3) = 171}), (2, 1) = Vector(3, {(1) = 201, (2) = 123, (3) = 56}), (2, 2) = Vector(3, {(1) = 77, (2) = 92, (3) = 166}), (2, 3) = Vector(3, {(1) = 174, (2) = 83, (3) = 97}), (2, 4) = Vector(3, {(1) = 86, (2) = 61, (3) = 104}), (2, 5) = Vector(3, {(1) = 167, (2) = 188, (3) = 75}), (2, 6) = Vector(3, {(1) = 213, (2) = 160, (3) = 55}), (3, 1) = Vector(3, {(1) = 49, (2) = 65, (3) = 143}), (3, 2) = Vector(3, {(1) = 99, (2) = 148, (3) = 80}), (3, 3) = Vector(3, {(1) = 155, (2) = 52, (3) = 59}), (3, 4) = Vector(3, {(1) = 227, (2) = 197, (3) = 52}), (3, 5) = Vector(3, {(1) = 169, (2) = 85, (3) = 147}), (3, 6) = Vector(3, {(1) = 61, (2) = 135, (3) = 167}), (4, 1) = Vector(3, {(1) = 245, (2) = 245, (3) = 242}), (4, 2) = Vector(3, {(1) = 200, (2) = 201, (3) = 201}), (4, 3) = Vector(3, {(1) = 160, (2) = 161, (3) = 162}), (4, 4) = Vector(3, {(1) = 120, (2) = 120, (3) = 121}), (4, 5) = Vector(3, {(1) = 84, (2) = 85, (3) = 86}), (4, 6) = Vector(3, {(1) = 52, (2) = 53, (3) = 54})})NULL

  

NULL

aRGB_D65in := XYZ_to_aRGB(CCXYZ_D65, D65):

aRGB_D65in = Matrix(4, 6, {(1, 1) = Vector(3, {(1) = 107, (2) = 82, (3) = 70}), (1, 2) = Vector(3, {(1) = 184, (2) = 146, (3) = 128}), (1, 3) = Vector(3, {(1) = 101, (2) = 122, (3) = 153}), (1, 4) = Vector(3, {(1) = 95, (2) = 107, (3) = 69}), (1, 5) = Vector(3, {(1) = 128, (2) = 127, (3) = 173}), (1, 6) = Vector(3, {(1) = 129, (2) = 188, (3) = 171}), (2, 1) = Vector(3, {(1) = 201, (2) = 123, (3) = 56}), (2, 2) = Vector(3, {(1) = 77, (2) = 92, (3) = 166}), (2, 3) = Vector(3, {(1) = 174, (2) = 83, (3) = 97}), (2, 4) = Vector(3, {(1) = 86, (2) = 61, (3) = 104}), (2, 5) = Vector(3, {(1) = 167, (2) = 188, (3) = 75}), (2, 6) = Vector(3, {(1) = 213, (2) = 160, (3) = 55}), (3, 1) = Vector(3, {(1) = 49, (2) = 65, (3) = 143}), (3, 2) = Vector(3, {(1) = 99, (2) = 148, (3) = 80}), (3, 3) = Vector(3, {(1) = 155, (2) = 52, (3) = 59}), (3, 4) = Vector(3, {(1) = 227, (2) = 197, (3) = 52}), (3, 5) = Vector(3, {(1) = 169, (2) = 85, (3) = 147}), (3, 6) = Vector(3, {(1) = 61, (2) = 135, (3) = 167}), (4, 1) = Vector(3, {(1) = 245, (2) = 245, (3) = 242}), (4, 2) = Vector(3, {(1) = 200, (2) = 201, (3) = 201}), (4, 3) = Vector(3, {(1) = 160, (2) = 161, (3) = 162}), (4, 4) = Vector(3, {(1) = 120, (2) = 120, (3) = 121}), (4, 5) = Vector(3, {(1) = 84, (2) = 85, (3) = 86}), (4, 6) = Vector(3, {(1) = 52, (2) = 53, (3) = 54})})

Convert XYZ to ProPhoto RGB (D50)

   

NULL

CC_PPhoto := XYZ_to_PPhoto(CCXYZ_D50):

NULL

CC_PPhoto = Matrix(4, 6, {(1, 1) = Vector(3, {(1) = 81, (2) = 67, (3) = 54}), (1, 2) = Vector(3, {(1) = 159, (2) = 135, (3) = 113}), (1, 3) = Vector(3, {(1) = 94, (2) = 102, (3) = 133}), (1, 4) = Vector(3, {(1) = 75, (2) = 86, (3) = 55}), (1, 5) = Vector(3, {(1) = 118, (2) = 111, (3) = 154}), (1, 6) = Vector(3, {(1) = 127, (2) = 168, (3) = 157}), (2, 1) = Vector(3, {(1) = 167, (2) = 118, (3) = 54}), (2, 2) = Vector(3, {(1) = 79, (2) = 74, (3) = 145}), (2, 3) = Vector(3, {(1) = 141, (2) = 83, (3) = 80}), (2, 4) = Vector(3, {(1) = 68, (2) = 49, (3) = 82}), (2, 5) = Vector(3, {(1) = 144, (2) = 170, (3) = 74}), (2, 6) = Vector(3, {(1) = 181, (2) = 152, (3) = 60}), (3, 1) = Vector(3, {(1) = 57, (2) = 50, (3) = 120}), (3, 2) = Vector(3, {(1) = 85, (2) = 123, (3) = 69}), (3, 3) = Vector(3, {(1) = 120, (2) = 59, (3) = 46}), (3, 4) = Vector(3, {(1) = 199, (2) = 188, (3) = 66}), (3, 5) = Vector(3, {(1) = 143, (2) = 85, (3) = 127}), (3, 6) = Vector(3, {(1) = 78, (2) = 111, (3) = 148}), (4, 1) = Vector(3, {(1) = 242, (2) = 243, (3) = 240}), (4, 2) = Vector(3, {(1) = 189, (2) = 190, (3) = 191}), (4, 3) = Vector(3, {(1) = 145, (2) = 146, (3) = 146}), (4, 4) = Vector(3, {(1) = 102, (2) = 102, (3) = 102}), (4, 5) = Vector(3, {(1) = 66, (2) = 66, (3) = 68}), (4, 6) = Vector(3, {(1) = 37, (2) = 37, (3) = 38})})NULL

Convert XYZ to sRGB (XYZ D50 or D65 to sRGB D65)

   

NULL

Note: The sRGB values published for ColorChecker assume a black point of 0cd/m^2.

``

CCsRGB_D65in := XYZ_to_sRGB(CCXYZ_D65, D65):

NULL

CCsRGB_D65in = Matrix(4, 6, {(1, 1) = Vector(3, {(1) = 115, (2) = 81, (3) = 67}), (1, 2) = Vector(3, {(1) = 199, (2) = 147, (3) = 129}), (1, 3) = Vector(3, {(1) = 91, (2) = 122, (3) = 156}), (1, 4) = Vector(3, {(1) = 90, (2) = 108, (3) = 64}), (1, 5) = Vector(3, {(1) = 130, (2) = 128, (3) = 176}), (1, 6) = Vector(3, {(1) = 92, (2) = 190, (3) = 172}), (2, 1) = Vector(3, {(1) = 224, (2) = 124, (3) = 47}), (2, 2) = Vector(3, {(1) = 68, (2) = 91, (3) = 170}), (2, 3) = Vector(3, {(1) = 198, (2) = 82, (3) = 97}), (2, 4) = Vector(3, {(1) = 94, (2) = 58, (3) = 106}), (2, 5) = Vector(3, {(1) = 159, (2) = 189, (3) = 63}), (2, 6) = Vector(3, {(1) = 230, (2) = 162, (3) = 39}), (3, 1) = Vector(3, {(1) = 35, (2) = 63, (3) = 147}), (3, 2) = Vector(3, {(1) = 67, (2) = 149, (3) = 74}), (3, 3) = Vector(3, {(1) = 180, (2) = 49, (3) = 57}), (3, 4) = Vector(3, {(1) = 238, (2) = 198, (3) = 20}), (3, 5) = Vector(3, {(1) = 193, (2) = 84, (3) = 151}), (3, 6) = Vector(3, {(1) = 54, (2) = 136, (3) = 170}), (4, 1) = Vector(3, {(1) = 245, (2) = 245, (3) = 243}), (4, 2) = Vector(3, {(1) = 200, (2) = 202, (3) = 202}), (4, 3) = Vector(3, {(1) = 161, (2) = 163, (3) = 163}), (4, 4) = Vector(3, {(1) = 121, (2) = 121, (3) = 122}), (4, 5) = Vector(3, {(1) = 82, (2) = 84, (3) = 86}), (4, 6) = Vector(3, {(1) = 49, (2) = 49, (3) = 51})})NULL

``

CCsRGB_D50in := XYZ_to_sRGB(CCXYZ_D50, D50):

``

CCsRGB_D50in = Matrix(4, 6, {(1, 1) = Vector(3, {(1) = 115, (2) = 81, (3) = 67}), (1, 2) = Vector(3, {(1) = 199, (2) = 148, (3) = 129}), (1, 3) = Vector(3, {(1) = 91, (2) = 123, (3) = 156}), (1, 4) = Vector(3, {(1) = 90, (2) = 108, (3) = 64}), (1, 5) = Vector(3, {(1) = 130, (2) = 129, (3) = 176}), (1, 6) = Vector(3, {(1) = 92, (2) = 190, (3) = 172}), (2, 1) = Vector(3, {(1) = 224, (2) = 125, (3) = 47}), (2, 2) = Vector(3, {(1) = 68, (2) = 92, (3) = 170}), (2, 3) = Vector(3, {(1) = 198, (2) = 83, (3) = 97}), (2, 4) = Vector(3, {(1) = 94, (2) = 59, (3) = 106}), (2, 5) = Vector(3, {(1) = 159, (2) = 190, (3) = 63}), (2, 6) = Vector(3, {(1) = 230, (2) = 163, (3) = 39}), (3, 1) = Vector(3, {(1) = 35, (2) = 64, (3) = 147}), (3, 2) = Vector(3, {(1) = 67, (2) = 149, (3) = 74}), (3, 3) = Vector(3, {(1) = 180, (2) = 51, (3) = 57}), (3, 4) = Vector(3, {(1) = 238, (2) = 199, (3) = 20}), (3, 5) = Vector(3, {(1) = 193, (2) = 85, (3) = 151}), (3, 6) = Vector(3, {(1) = 54, (2) = 137, (3) = 170}), (4, 1) = Vector(3, {(1) = 245, (2) = 246, (3) = 243}), (4, 2) = Vector(3, {(1) = 200, (2) = 203, (3) = 202}), (4, 3) = Vector(3, {(1) = 161, (2) = 164, (3) = 163}), (4, 4) = Vector(3, {(1) = 121, (2) = 122, (3) = 122}), (4, 5) = Vector(3, {(1) = 82, (2) = 84, (3) = 86}), (4, 6) = Vector(3, {(1) = 49, (2) = 50, (3) = 51})})``

NULL

``

NULL

NULL

``

 

 

 

 

 

 

 

 

``

 

Corrections to the original version of theis document;
• Make the scaling for a nonzero black point the same for all RGB color spaces.
• Clip negative RGB values to zero.
• Remove the redundant Array container from matrix multiplications.
Use map in place of the $ to apply a function to each element of an Array.

Pixel_Conversion_B.mw

 

First 60 61 62 63 64 65 66 Page 62 of 69