Maple 2017 Questions and Posts

These are Posts and Questions associated with the product, Maple 2017
 

Download test.mw
Udp: document attached.

Q__gr := Typesetting[delayDotProduct](Vector[row](8, {(1) = 0, (2) = 5, (3) = 10, (4) = 15, (5) = 20, (6) = 25, (7) = 30, (8) = 35}), Unit('m'^3/'day'), true)

Vector[row](%id = 18446746861178193550)

(1)

`η__gr` := Vector[row](8, {(1) = 0, (2) = 9.324, (3) = 17, (4) = 23.232, (5) = 27.192, (6) = 29.6, (7) = 29.516, (8) = 24.592})

Vector[row](%id = 18446746861214593262)

(2)

`pointsη` := [seq([Q__gr[i], `η__gr`[i]], i = 1 .. 8)]

[[0, 0], [5*Units:-Unit(m^3/d), 9.324], [10*Units:-Unit(m^3/d), 17], [15*Units:-Unit(m^3/d), 23.232], [20*Units:-Unit(m^3/d), 27.192], [25*Units:-Unit(m^3/d), 29.6], [30*Units:-Unit(m^3/d), 29.516], [35*Units:-Unit(m^3/d), 24.592]]

(3)

CurveFitting[PolynomialInterpolation](`pointsη`, q)

0.2348698413e-7*q^7/Units:-Unit(m^3/d)^7-0.2980622223e-5*q^6/Units:-Unit(m^3/d)^6+0.1482222222e-3*q^5/Units:-Unit(m^3/d)^5-0.3663955556e-2*q^4/Units:-Unit(m^3/d)^4+0.4666528890e-1*q^3/Units:-Unit(m^3/d)^3-.3165382223*q^2/Units:-Unit(m^3/d)^2+2.655161905*q/Units:-Unit(m^3/d)

(4)

eta := proc (q) options operator, arrow; 0.2348698413e-7*q^7/Units:-Unit(m^3/d)^7-0.2980622223e-5*q^6/Units:-Unit(m^3/d)^6+0.1482222222e-3*q^5/Units:-Unit(m^3/d)^5-0.3663955556e-2*q^4/Units:-Unit(m^3/d)^4+0.4666528890e-1*q^3/Units:-Unit(m^3/d)^3-.3165382223*q^2/Units:-Unit(m^3/d)^2+2.655161905*q/Units:-Unit(m^3/d) end proc

proc (q) options operator, arrow; 0.2348698413e-7*q^7/Units:-Unit(m^3/d)^7-0.2980622223e-5*q^6/Units:-Unit(m^3/d)^6+0.1482222222e-3*q^5/Units:-Unit(m^3/d)^5-0.3663955556e-2*q^4/Units:-Unit(m^3/d)^4+0.4666528890e-1*q^3/Units:-Unit(m^3/d)^3-.3165382223*q^2/Units:-Unit(m^3/d)^2+2.655161905*q/Units:-Unit(m^3/d) end proc

(5)

eta(12*Unit('m'^3/'day'))

.8415811058*Units:-Unit(m^3/d)^7/Units:-Unit(m^3/d)^7-8.900090268*Units:-Unit(m^3/d)^6/Units:-Unit(m^3/d)^6+36.88243199*Units:-Unit(m^3/d)^5/Units:-Unit(m^3/d)^5-75.97578241*Units:-Unit(m^3/d)^4/Units:-Unit(m^3/d)^4+80.63761922*Units:-Unit(m^3/d)^3/Units:-Unit(m^3/d)^3-45.58150401*Units:-Unit(m^3/d)^2/Units:-Unit(m^3/d)^2+31.86194286*Units:-Unit(m^3/d)/Units:-Unit(m^3/d)

(6)

simplify(19.76619849)

Error, (in Units:-Standard:-+) the units `m^21/s^7` and `m^18/s^6` have incompatible dimensions

 

``


 

Download test.mw

 

Hi!

I got a function (from CurveFitting), that produce a polynomial with the some units inside:

 

As i can see, it can be easy simplified, but i get:


 

Is where any trick to do it, without stripping units with convert(unit_free) or something?

Thank you!

 

  1. (k-2)*(k^2+5)*(k^3-k^2+7*k+8)/(6*k*(k^2-3*k+8))
  2. (k+2)*(k^2+5)*(k^3-5*k^2+13*k-8)/(6*k*(k^2-3*k+8))
  3. k^3+3*k^2+11*k-3
  4. k^2+2*k+9

Hello everybody

I am currently having trouble 'manually simplifying' an equation that I differentiated using maple. Basically, the equation that I get involves hessian-matrices. Since the resulting equation is rather long, I would like to replace every such matrix by a sign, say H.
This is easy to do for non-matrix equations, i.e.

subs(sin(x)sin(y) = z, sin(x)sin(y) + xy)

will give me z + xy, which looks a bit easier.

However, I couldn't figure out how to do a similar thing with matrices. For example, the following code

subs(Matrix(3, 3, [[x, y, z], [y, z, x], [z, x, y]]) = A, Matrix(3, 3, [[x, y, z], [y, z, x], [z, x, y]])+B)

 will not work.
I already thought about converting the matrices first into lists (because for some reason it works for lists). However, I would also like to do the same as above for for functions of matrices, i.e. set F(A) = G, where A is a matrix (this also fails, probably for the same reason).

Also, the same thing seems to fail for vectors and general arrays, so I guess the actual problem might be the array type.

I also tried alternative ways, such as eval or algsubs, but the later even gives an error since it cannot handle matrices at all.

This feels a bit like a noob question, but I spent almost 2 days now searching for an answer or a workaround, so my apologies if I missed something trivial.

All the best
Adrian

 

 

Hi, I try to solve the below integral. when I press enter key maple dosen't show answer and show the integral again.

int(r*r[bc]*r[tc], r = r[bc] .. r[tc]);

but when I write intgral this way and use " i " as subscript ,maple solve it.

int(r[i]*r[bc]*r[tc], r[i] = r[bc] .. r[tc]);

I just want to know why?

what is difference between first and second integral?

and also is there any way (or any packages) to solve these integrals?

(I read https://www.maplesoft.com/applications/view.aspx?SID=6846&view=html article befor)

thanks.

  1. (2*k^3-6*k^2+7*k+15-k*sqrt(k^6-12*k^5+64*k^4-198*k^3+448*k^2-636*k+369))/(-k^4+2*k^3-2*k^2+10*k+15)
  2. (k^3+5*k+(-k^2+k)*sqrt(k^4-10*k^3+37*k^2-60*k+180)+30)/(-k^4+k^3+k^2+5*k+30)

hi

please help me for simplify (factor) this equations.

thanks

vel.mw
 

simplify(-(1/226609908940800)*(106722*Br*NT*ln(h)*NB-106722*Br*NT*ln(R0)*NB-106722*Br*NT^2*ln(h)+106722*Br*NT^2*ln(R0)-106722*NB^2*Gr*ln(h)+106722*NB^2*Gr*ln(R0)+106722*Gr*NT*ln(h)*NB-106722*Gr*NT*ln(R0)*NB)*r^12/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-524288*Br*NT*ln(h)*R0*NB-524288*Br*NT*ln(h)*h*NB+524288*Br*NT*ln(R0)*R0*NB+524288*Br*NT*ln(R0)*h*NB+524288*Br*NT^2*ln(h)*R0+524288*Br*NT^2*ln(h)*h-524288*Br*NT^2*ln(R0)*R0-524288*Br*NT^2*ln(R0)*h+524288*NB^2*Gr*ln(h)*R0+524288*NB^2*Gr*ln(h)*h-524288*NB^2*Gr*ln(R0)*R0-524288*NB^2*Gr*ln(R0)*h-524288*Gr*NT*ln(h)*R0*NB-524288*Gr*NT*ln(h)*h*NB+524288*Gr*NT*ln(R0)*R0*NB+524288*Gr*NT*ln(R0)*h*NB)*r^11/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(1920996*Br*NT*ln(h)*R0*h*NB-15367968*L^2*Br*NT^2*ln(h)+15367968*L^2*Br*NT^2*ln(R0)-15367968*L^2*Gr*NB^2*ln(h)+15367968*L^2*Gr*NB^2*ln(R0)-960498*NB^2*Gr*ln(h)*R0^2-960498*NB^2*Gr*ln(h)*h^2+960498*NB^2*Gr*ln(R0)*R0^2-1920996*Br*NT*ln(R0)*R0*h*NB+1920996*Gr*NT*ln(h)*R0*h*NB-1920996*Gr*NT*ln(R0)*R0*h*NB+960498*NB^2*Gr*ln(R0)*h^2-960498*Br*NT^2*ln(h)*h^2+960498*Br*NT^2*ln(R0)*R0^2-960498*Br*NT^2*ln(h)*R0^2+960498*Br*NT^2*ln(R0)*h^2+1920996*Br*NT^2*ln(R0)*R0*h-960498*Gr*NT*ln(R0)*h^2*NB+960498*Gr*NT*ln(h)*h^2*NB-960498*Gr*NT*ln(R0)*R0^2*NB+960498*Gr*NT*ln(h)*R0^2*NB-1920996*NB^2*Gr*ln(h)*R0*h+1920996*NB^2*Gr*ln(R0)*R0*h-15367968*L^2*Gr*NB*NT*ln(R0)-960498*Br*NT*ln(R0)*h^2*NB+15367968*L^2*Gr*NB*NT*ln(h)+960498*Br*NT*ln(h)*h^2*NB-960498*Br*NT*ln(R0)*R0^2*NB-15367968*L^2*Br*NB*NT*ln(R0)+960498*Br*NT*ln(h)*R0^2*NB-1920996*Br*NT^2*ln(h)*R0*h+15367968*L^2*Br*NB*NT*ln(h))*r^10/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-63438848*L^2*Br*NB*NT*ln(h)*R0-63438848*L^2*Br*NB*NT*ln(h)*h+63438848*L^2*Br*NB*NT*ln(R0)*R0+63438848*L^2*Br*NB*NT*ln(R0)*h+63438848*L^2*Br*NT^2*ln(h)*R0+63438848*L^2*Br*NT^2*ln(h)*h-63438848*L^2*Br*NT^2*ln(R0)*R0-63438848*L^2*Br*NT^2*ln(R0)*h+63438848*L^2*Gr*NB^2*ln(h)*R0+63438848*L^2*Gr*NB^2*ln(h)*h-63438848*L^2*Gr*NB^2*ln(R0)*R0-63438848*L^2*Gr*NB^2*ln(R0)*h-63438848*L^2*Gr*NB*NT*ln(h)*R0-63438848*L^2*Gr*NB*NT*ln(h)*h+63438848*L^2*Gr*NB*NT*ln(R0)*R0+63438848*L^2*Gr*NB*NT*ln(R0)*h)*r^9/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(11116875*Br*NT^2*R0^4-11116875*Br*NT^2*h^4-11116875*NB^2*Gr*h^4+1536796800*p*ln(h)*NB+11116875*NB^2*Gr*R0^4-1536796800*p*ln(R0)*NB+11116875*Gr*NT*h^4*NB-11116875*Br*NT*R0^4*NB-11116875*Gr*NT*R0^4*NB-192099600*L^2*Gr*NB*NT*ln(R0)*R0*h+192099600*L^2*Gr*NB*NT*ln(h)*R0*h-192099600*L^2*Br*NB*NT*ln(R0)*R0*h+192099600*L^2*Br*NB*NT*ln(h)*R0*h-5336100*Br*NT^2*ln(R0)*R0*h^3-11116875*Gr*NT*R0^3*h*NB-11116875*Br*NT*R0^3*h*NB+11116875*Br*NT*R0*h^3*NB+11116875*Gr*NT*R0*h^3*NB+5336100*Gr*NT*ln(R0)*R0*h^3*NB+24012450*Gr*NT*ln(R0)*R0^2*h^2*NB-24012450*Gr*NT*ln(h)*R0^2*h^2*NB-5336100*Gr*NT*ln(h)*R0^3*h*NB-5336100*Gr*NT*R0*h^3*ln(r)*NB+5336100*Gr*NT*R0^3*h*ln(r)*NB-96049800*L^2*Gr*NB*NT*ln(R0)*h^2-96049800*L^2*Gr*NB*NT*ln(R0)*R0^2+96049800*L^2*Gr*NB*NT*ln(h)*h^2+96049800*L^2*Gr*NB*NT*ln(h)*R0^2+192099600*L^2*Gr*NB^2*ln(R0)*R0*h-192099600*L^2*Gr*NB^2*ln(h)*R0*h+5336100*Br*NT*ln(R0)*R0*h^3*NB+24012450*Br*NT*ln(R0)*R0^2*h^2*NB-24012450*Br*NT*ln(h)*R0^2*h^2*NB-5336100*Br*NT*ln(h)*R0^3*h*NB-5336100*Br*NT*R0*h^3*ln(r)*NB+5336100*Gr*NT*ln(R0)*h^4*NB-5336100*Gr*NT*ln(h)*R0^4*NB-5336100*Gr*NT*h^4*ln(r)*NB+5336100*Br*NT*R0^3*h*ln(r)*NB+192099600*L^2*Br*NT^2*ln(R0)*R0*h-192099600*L^2*Br*NT^2*ln(h)*R0*h-96049800*L^2*Br*NB*NT*ln(R0)*h^2-96049800*L^2*Br*NB*NT*ln(R0)*R0^2+96049800*L^2*Br*NB*NT*ln(h)*h^2+96049800*L^2*Br*NB*NT*ln(h)*R0^2+5336100*Gr*NT*R0^4*ln(r)*NB-5336100*NB^2*Gr*ln(R0)*R0*h^3-24012450*NB^2*Gr*ln(R0)*R0^2*h^2+24012450*NB^2*Gr*ln(h)*R0^2*h^2+5336100*NB^2*Gr*ln(h)*R0^3*h+5336100*NB^2*Gr*R0*h^3*ln(r)-5336100*NB^2*Gr*R0^3*h*ln(r)+96049800*L^2*Gr*NB^2*ln(R0)*h^2+96049800*L^2*Gr*NB^2*ln(R0)*R0^2-96049800*L^2*Gr*NB^2*ln(h)*h^2-96049800*L^2*Gr*NB^2*ln(h)*R0^2-1536796800*L^4*Gr*NB*NT*ln(R0)+5336100*Br*NT^2*R0*h^3*ln(r)+1536796800*L^4*Gr*NB*NT*ln(h)-5336100*Br*NT^2*R0^3*h*ln(r)-5336100*Br*NT*ln(h)*R0^4*NB+5336100*Br*NT*ln(R0)*h^4*NB-5336100*Br*NT*h^4*ln(r)*NB+5336100*NB^2*Gr*ln(h)*R0^4-5336100*NB^2*Gr*ln(R0)*h^4-5336100*NB^2*Gr*R0^4*ln(r)+5336100*NB^2*Gr*h^4*ln(r)-1536796800*L^4*Gr*NB^2*ln(h)+1536796800*L^4*Gr*NB^2*ln(R0)+1536796800*L^4*Br*NT^2*ln(R0)-5336100*Br*NT^2*R0^4*ln(r)+5336100*Br*NT^2*h^4*ln(r)-1536796800*L^4*Br*NT^2*ln(h)+11116875*Br*NB*NT*h^4+11116875*NB^2*Gr*R0^3*h-11116875*NB^2*Gr*R0*h^3+11116875*Br*NT^2*R0^3*h-11116875*Br*NT^2*R0*h^3+5336100*Br*NT^2*ln(h)*R0^4-5336100*Br*NT^2*ln(R0)*h^4+96049800*L^2*Br*NT^2*ln(R0)*h^2+5336100*Br*NT*R0^4*ln(r)*NB-96049800*L^2*Br*NT^2*ln(h)*h^2+96049800*L^2*Br*NT^2*ln(R0)*R0^2-1536796800*L^4*Br*NB*NT*ln(R0)-96049800*L^2*Br*NT^2*ln(h)*R0^2+24012450*Br*NT^2*ln(h)*R0^2*h^2+1536796800*L^4*Br*NB*NT*ln(h)+5336100*Br*NT^2*ln(h)*R0^3*h-24012450*Br*NT^2*ln(R0)*R0^2*h^2)*r^8/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-5138546688*L^4*Br*NB*NT*ln(h)*R0-5138546688*L^4*Br*NB*NT*ln(h)*h+5138546688*L^4*Br*NB*NT*ln(R0)*R0+5138546688*L^4*Br*NB*NT*ln(R0)*h+5138546688*L^4*Br*NT^2*ln(h)*R0+5138546688*L^4*Br*NT^2*ln(h)*h-5138546688*L^4*Br*NT^2*ln(R0)*R0-5138546688*L^4*Br*NT^2*ln(R0)*h+5138546688*L^4*Gr*NB^2*ln(h)*R0+5138546688*L^4*Gr*NB^2*ln(h)*h-5138546688*L^4*Gr*NB^2*ln(R0)*R0-5138546688*L^4*Gr*NB^2*ln(R0)*h-5138546688*L^4*Gr*NB*NT*ln(h)*R0-5138546688*L^4*Gr*NB*NT*ln(h)*h+5138546688*L^4*Gr*NB*NT*ln(R0)*R0+5138546688*L^4*Gr*NB*NT*ln(R0)*h)*r^7/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(341510400*L^2*Gr*NB*NT*ln(R0)*R0*h^3+1536796800*L^2*Gr*NB*NT*ln(R0)*R0^2*h^2-1536796800*L^2*Gr*NB*NT*ln(h)*R0^2*h^2-341510400*L^2*Gr*NB*NT*ln(h)*R0^3*h-341510400*L^2*Gr*NB*NT*ln(r)*R0*h^3+341510400*L^2*Gr*NB*NT*ln(r)*R0^3*h-12294374400*L^4*Gr*NB*NT*ln(R0)*R0*h+12294374400*L^4*Gr*NB*NT*ln(h)*R0*h+341510400*L^2*Br*NB*NT*ln(R0)*R0*h^3+1536796800*L^2*Br*NB*NT*ln(R0)*R0^2*h^2-1536796800*L^2*Br*NB*NT*ln(h)*R0^2*h^2-341510400*L^2*Br*NB*NT*ln(h)*R0^3*h-341510400*L^2*Br*NB*NT*ln(r)*R0*h^3+341510400*L^2*Br*NB*NT*ln(r)*R0^3*h+341510400*L^2*Gr*NB*NT*ln(R0)*h^4-341510400*L^2*Gr*NB*NT*ln(h)*R0^4-341510400*L^2*Gr*NB*NT*ln(r)*h^4+341510400*L^2*Gr*NB*NT*ln(r)*R0^4-341510400*L^2*Gr*NB^2*ln(R0)*R0*h^3-12294374400*L^4*Br*NB*NT*ln(R0)*R0*h+12294374400*L^4*Br*NB*NT*ln(h)*R0*h-1536796800*L^2*Gr*NB^2*ln(R0)*R0^2*h^2+1536796800*L^2*Gr*NB^2*ln(h)*R0^2*h^2+341510400*L^2*Gr*NB^2*ln(h)*R0^3*h+341510400*L^2*Gr*NB^2*ln(r)*R0*h^3-341510400*L^2*Gr*NB^2*ln(r)*R0^3*h-6147187200*L^4*Gr*NB*NT*ln(R0)*h^2-6147187200*L^4*Gr*NB*NT*ln(R0)*R0^2+6147187200*L^4*Gr*NB*NT*ln(h)*h^2+6147187200*L^4*Gr*NB*NT*ln(h)*R0^2+12294374400*L^4*Gr*NB^2*ln(R0)*R0*h-12294374400*L^4*Gr*NB^2*ln(h)*R0*h-341510400*L^2*Br*NT^2*ln(R0)*R0*h^3-1536796800*L^2*Br*NT^2*ln(R0)*R0^2*h^2+1536796800*L^2*Br*NT^2*ln(h)*R0^2*h^2+341510400*L^2*Br*NT^2*ln(h)*R0^3*h+341510400*L^2*Br*NT^2*ln(r)*R0*h^3-341510400*L^2*Br*NT^2*ln(r)*R0^3*h+341510400*L^2*Br*NB*NT*ln(R0)*h^4-341510400*L^2*Br*NB*NT*ln(h)*R0^4-341510400*L^2*Br*NB*NT*ln(r)*h^4+341510400*L^2*Br*NB*NT*ln(r)*R0^4+12294374400*L^4*Br*NT^2*ln(R0)*R0*h-12294374400*L^4*Br*NT^2*ln(h)*R0*h-6147187200*L^4*Br*NB*NT*ln(R0)*h^2-6147187200*L^4*Br*NB*NT*ln(R0)*R0^2+6147187200*L^4*Br*NB*NT*ln(h)*h^2+6147187200*L^4*Br*NB*NT*ln(h)*R0^2+626102400*L^2*Br*NT^2*R0^3*h-626102400*L^2*Br*NT^2*R0*h^3-626102400*L^2*Br*NB*NT*R0^4+626102400*L^2*Br*NB*NT*h^4+626102400*L^2*Gr*NB*NT*h^4-626102400*L^2*Gr*NB^2*R0*h^3+626102400*L^2*Gr*NB^2*R0^3*h-626102400*L^2*Gr*NB*NT*R0^4-6147187200*L^4*Gr*NB^2*ln(h)*h^2+6147187200*L^4*Gr*NB^2*ln(R0)*R0^2-6147187200*L^4*Gr*NB^2*ln(h)*R0^2-341510400*L^2*Br*NT^2*ln(R0)*h^4+341510400*L^2*Br*NT^2*ln(r)*h^4+341510400*L^2*Br*NT^2*ln(h)*R0^4-626102400*L^2*Gr*NB*NT*R0^3*h+626102400*L^2*Gr*NB*NT*R0*h^3-626102400*L^2*Br*NB*NT*R0^3*h+626102400*L^2*Br*NB*NT*R0*h^3+6147187200*L^4*Br*NT^2*ln(R0)*h^2-341510400*L^2*Br*NT^2*ln(r)*R0^4+6147187200*L^4*Br*NT^2*ln(R0)*R0^2-6147187200*L^4*Br*NT^2*ln(h)*R0^2-6147187200*L^4*Br*NT^2*ln(h)*h^2-341510400*L^2*Gr*NB^2*ln(R0)*h^4-393419980800*c2*ln(h)*ln(r)*L^2*NB+393419980800*c2*ln(R0)*ln(r)*L^2*NB-341510400*L^2*Gr*NB^2*ln(r)*R0^4+341510400*L^2*Gr*NB^2*ln(r)*h^4+341510400*L^2*Gr*NB^2*ln(h)*R0^4+6147187200*L^4*Gr*NB^2*ln(R0)*h^2-626102400*L^2*Gr*NB^2*h^4+626102400*L^2*Br*NT^2*R0^4-626102400*L^2*Br*NT^2*h^4-393419980800*c1*ln(h)*L^2*NB+327849984000*c2*ln(h)*L^2*NB+98354995200*L^2*p*NB*ln(h)+393419980800*c1*ln(R0)*L^2*NB-327849984000*c2*ln(R0)*L^2*NB-98354995200*L^2*p*NB*ln(R0)+626102400*L^2*Gr*NB^2*R0^4)*r^6/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-3540779827200*c3*L^2*NB*ln(h)+3540779827200*c3*L^2*NB*ln(R0)+12294374400*L^4*Br*NT^2*ln(h)*R0^3*h+55324684800*L^4*Br*NT^2*ln(h)*R0^2*h^2-55324684800*L^4*Br*NT^2*ln(R0)*R0^2*h^2-12294374400*L^4*Br*NT^2*ln(R0)*R0*h^3-12294374400*L^4*Gr*NB^2*ln(r)*R0^3*h+12294374400*L^4*Gr*NB^2*ln(r)*R0*h^3+12294374400*L^4*Gr*NB^2*ln(h)*R0^3*h+55324684800*L^4*Gr*NB^2*ln(h)*R0^2*h^2-55324684800*L^4*Gr*NB^2*ln(R0)*R0^2*h^2-12294374400*L^4*Gr*NB^2*ln(R0)*R0*h^3+12294374400*L^4*Gr*NB*NT*ln(r)*R0^4-12294374400*L^4*Gr*NB*NT*ln(r)*h^4-12294374400*L^4*Gr*NB*NT*ln(h)*R0^4+12294374400*L^4*Gr*NB*NT*ln(R0)*h^4+12294374400*L^4*Br*NB*NT*ln(r)*R0^4-12294374400*L^4*Br*NB*NT*ln(r)*h^4-12294374400*L^4*Br*NB*NT*ln(h)*R0^4+12294374400*L^4*Br*NB*NT*ln(R0)*h^4-12294374400*L^4*Br*NT^2*ln(r)*R0^3*h+12294374400*L^4*Br*NT^2*ln(r)*R0*h^3-18441561600*L^4*Gr*NB*NT*R0^3*h+18441561600*L^4*Gr*NB*NT*R0*h^3-18441561600*L^4*Br*NB*NT*R0^3*h+18441561600*L^4*Br*NB*NT*R0*h^3+12294374400*L^4*Br*NB*NT*ln(R0)*R0*h^3+12294374400*L^4*Gr*NB*NT*ln(r)*R0^3*h-12294374400*L^4*Gr*NB*NT*ln(r)*R0*h^3-12294374400*L^4*Gr*NB*NT*ln(h)*R0^3*h-55324684800*L^4*Gr*NB*NT*ln(h)*R0^2*h^2+55324684800*L^4*Gr*NB*NT*ln(R0)*R0^2*h^2+12294374400*L^4*Gr*NB*NT*ln(R0)*R0*h^3-18441561600*L^4*Gr*NB^2*R0*h^3+18441561600*L^4*Gr*NB*NT*h^4+18441561600*L^4*Br*NB*NT*h^4-18441561600*L^4*Br*NB*NT*R0^4-18441561600*L^4*Br*NT^2*R0*h^3+18441561600*L^4*Br*NT^2*R0^3*h-12294374400*L^4*Gr*NB^2*ln(R0)*h^4-14163119308800*L^4*c2*ln(r)*NB*ln(h)+14163119308800*L^4*c2*ln(r)*NB*ln(R0)-3540779827200*c4*ln(r)*L^2*NB*ln(h)+3540779827200*c4*ln(r)*L^2*NB*ln(R0)-18441561600*L^4*Gr*NB*NT*R0^4+18441561600*L^4*Gr*NB^2*R0^3*h-12294374400*L^4*Br*NT^2*ln(r)*R0^4+12294374400*L^4*Br*NT^2*ln(r)*h^4+12294374400*L^4*Br*NT^2*ln(h)*R0^4-12294374400*L^4*Br*NT^2*ln(R0)*h^4-12294374400*L^4*Gr*NB^2*ln(r)*R0^4+12294374400*L^4*Gr*NB^2*ln(r)*h^4+12294374400*L^4*Gr*NB^2*ln(h)*R0^4+55324684800*L^4*Br*NB*NT*ln(R0)*R0^2*h^2-55324684800*L^4*Br*NB*NT*ln(h)*R0^2*h^2-12294374400*L^4*Br*NB*NT*ln(h)*R0^3*h-12294374400*L^4*Br*NB*NT*ln(r)*R0*h^3+12294374400*L^4*Br*NB*NT*ln(r)*R0^3*h+18441561600*L^4*Gr*NB^2*R0^4-18441561600*L^4*Gr*NB^2*h^4+18441561600*L^4*Br*NT^2*R0^4-3540779827200*L^4*p*NB*ln(R0)+5311169740800*c4*ln(h)*L^2*NB-5311169740800*c4*ln(R0)*L^2*NB-18441561600*L^4*Br*NT^2*h^4-14163119308800*L^4*c1*NB*ln(h)+7081559654400*L^4*c2*ln(h)*NB+3540779827200*L^4*p*NB*ln(h)+14163119308800*L^4*c1*NB*ln(R0)-7081559654400*L^4*c2*ln(R0)*NB)*r^4/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-226609908940800*L^6*c2*ln(r)*NB*ln(h)+226609908940800*L^6*c2*ln(r)*NB*ln(R0)-226609908940800*L^6*c1*NB*ln(h)+226609908940800*L^6*c1*NB*ln(R0)-56652477235200*L^4*c4*ln(r)*NB*ln(h)+56652477235200*L^4*c4*ln(r)*NB*ln(R0)-56652477235200*L^4*c3*NB*ln(h)+56652477235200*L^4*c4*ln(h)*NB+56652477235200*L^4*c3*NB*ln(R0)-56652477235200*L^4*c4*ln(R0)*NB)*r^2/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-226609908940800*L^6*c4*ln(r)*NB*ln(h)+226609908940800*L^6*c4*ln(r)*NB*ln(R0)-226609908940800*L^6*c3*NB*ln(h)+226609908940800*L^6*c3*NB*ln(R0))/(L^6*NB*(ln(h)-ln(R0)))):

NULL


 

Download vel.mw

 

I am trying to input data via a data table. Have several problems here.

I used an array because I want the row and column numbers to start at 0.

1st When the table appers after that the document runs hediously slow as in a second or two to enter a digit or letters appear after typing.  Like something is absorbing the computer resources. But I have a fast machine.

2nd Any data I  enter to the table vanishes but does get stored.

3rd I tried to turn it all into a procedure but cant get that to work.
 

restart

with(DocumentTools:-Components)

[Button, CheckBox, CodeEditRegion, ComboBox, DataTable, Dial, Label, ListBox, MathContainer, Meter, Microphone, Plot, RadioButton, RotaryGauge, Shortcut, Slider, Speaker, State, TextArea, ToggleButton, VideoPlayer, VolumeGauge]

(1)

with(DocumentTools:-Layout)

[Cell, Column, DocumentBlock, Equation, Font, Group, Image, InlinePlot, Input, Output, Row, Section, Table, Textfield, Title, Worksheet]

(2)

with(DocumentTools)

[AddIcon, AddPalette, AddPaletteEntry, Components, ContentToString, CreateTask, Do, GetDocumentProperty, GetProperty, InsertContent, InsertTask, Layout, RemovePalette, RemovePaletteEntry, RemoveTask, Retrieve, RunWorksheet, SetDocumentProperty, SetProperty, Tabulate]

(3)

ary := Array(0 .. 3, 0 .. 3)

Array(%id = 18446746457454449478)

(4)

``

 

 

``

DT := DataTable(identity = "DataTable0", variable = 'ary', rowheader, columnheader, columnnames = [beta^0, beta, beta^2, beta^3], rownames = [alpha^0, alpha, alpha^2, alpha^3])

xml := Worksheet(Group(Input(Textfield(DT))))

DocumentTools:-InsertContent(xml)

PN1 := copy(ary, 0 .. (), 0 .. ())

Array(%id = 18446746457454471998)

(5)

Matrix(PN1)

Matrix(%id = 18446746457454477550)

(6)

PN1[0, 0]

6

(7)

BiPolyNum := proc (a := 4, b := 4) local ary, DT; description "Creates Bi Polynumbers"; ary := Array(0 .. a, 0 .. b); DT := DataTable(identity = "DataTable0", variable = 'ary', rowheader, columnheader, columnnames = [1, beta, beta^2, beta^3], rownames = [1, alpha, alpha^2, alpha^3]); DocumentTools:-InsertContent(xml); return copy(ary) end proc

proc (a := 4, b := 4) local ary, DT; description "Creates Bi Polynumbers"; ary := Array(0 .. a, 0 .. b); DT := DocumentTools:-Components:-DataTable(identity = "DataTable0", variable = 'ary', rowheader, columnheader, columnnames = [1, beta, beta^2, beta^3], rownames = [1, alpha, alpha^2, alpha^3]); DocumentTools:-InsertContent(xml); return copy(ary) end proc

(8)

``

``

f := BiPolyNum()

Array(%id = 18446746457454464046)

(9)

f

Array(%id = 18446746457454464046)

(10)

Matrix(f)

Matrix(%id = 18446746457454466582)

(11)

``


 

Download DataTable_Experiment.mw

Why is maple showing 1D math when evaluating?

I have a trigonometric equation that outputs with a solution in terms of _B1 which I want to remove.

restart: solve({7*cos(2*t)=7*cos(t)^2-5, t>=0, t<=2*Pi}, t, allsolutions, explicit);

output:

{t = arccos((1/7)*sqrt(14))},

{t = 2*Pi-arccos((1/7)*sqrt(14))},

{t = 2*arccos((1/7)*sqrt(14))*_B1-2*_B1*Pi+2*Pi*_Z1-arccos((1/7)*sqrt(14))+Pi}

Is there anyway to get rid of the _B1, or somehow evaluate it by a substitution?

 

Even numerically the answer still retains the _B1.

{t = 1.006853685}, {t = 5.276331623}, {t = -4.269477938*_B1+6.283185308*_Z1+2.134738969}

 

Also it would be nice to remove the _Z1 subscript too, as the domain of the equation is [0, 2pi].

I tried removing the 'AllSolutions' command , but then I am missing two solutions:

solve({7*cos(2*t)=7*cos(t)^2-5., t>=0 and t<=2*Pi}, t, Explicit);

 {t = 1.006853685}, {t = 2.134738969}

There should be 4 solutions in the domain [0, 2pi].

Hello people in mapleprimes,

I am reading Introduction to Maple. There, the following input and output appear.

> convert((-8)^(1/3), RootOf);
1+RootOf(_Z^2 + 3, index = 1)

I think, which implies

beta^3+8=0

and

with the solution alpha of alpha^2+3=0, beta above is expressed as 1+alpha.

But, probably from my understanding being wrong, I can't understand why this becomes so.

So, though this is about mathematics, not about maple, if possible, can I ask you to teach me why

convert((-8)^(1/3), RootOf) brings 1+RootOf(_Z^2 + 3, index = 1)?

Thanks in advance.

 

Maple easily solves multi-points problems for an ODE, if the equation can be integrated analytically.

For example, the following 3-points problem  is solvable:

dsolve([diff(y(x), x$3)+diff(y(x), x$2)+y(x)=1, y(0)=0, y(1)=0, y(2)=1], [y(x)]);

But a similar problem cannot be solved numerically.

For example,

dsolve([diff(y(x), x$3)+diff(y(x), x$2)+y(x)=1, y(0)=0, y(1)=0, y(2)=1], [y(x)], type = numeric, 'output' = Array([seq(k/5, k=0..5)]));

generates: Error, (in dsolve/numeric/process_input) boundary conditions specified at too many points: {0, 1, 2}, can only solve two-point boundary value problems

I need to solve a certain number of multi-points problems for ODE systems numerically. Maybe, for this there are some workaround?

Hello together,

I´m a new member and I used in Maple 2017 the function "is prime" for the largest known Mersenne prime (277,232,917 − 1) with the command "isprime (277,232,917 − 1)" to test how much time the programm needs that it returns "true".

1.) Has anybody experiences with the function "is prime" in relation with such a large Mersenne prime ( 277,232,917 − 1) or similar Mersenne primes like ( 257,885,161 − 1), ( 274,207,281 − 1), etc... ? How many days it takes to get the confirmation in my case ?

My processor: Intel i5-4590 CPU @ 3.30 GHz

System type: 64 Bit  

I started the function isprime(277,232,917 − 1) before 5 days. The programm is still evaluating, next to "evaluating" the point changes his colors (black and white) continuous, so I think the programm is still working, but the memory stopped at 2440.33 M and the time stopped at 12326.65 s

2.) Has anybody an idea why Maple has stopped to count the time and the memory in this case ? 

 

I hope that somebody can answer my 2 questions....thx... 

Hello,

I have a question about the Import of .txt file:

I can import the following .txt, but everytime I want to convert in a matrix or something else, maple chrashes. 

I need some parts (smaller matrices) of this data (for example: all values from coloumn 200-400 and row 100-600)

I hope somebody can help me

Thanks 
Martin

-Validierung-Stahl-AI-.txt

 

I created the following plot

plot([BesselJ(0, x), BesselJ(1, x)], x = 0 .. 10, color = [red, blue]);
 

What I want to do mext is calculate all x values on this interval wherethe two paths intersect

 Calculate all x values on this interval where

Is it possible that the two-variable arctan function arctan(a(x),b(x)) could be could be equal to arctan(a(x)/b(x)) as long as x>0? And why?

arctan(a(x),b(x))=arctan(a(x)/b(x) as long as x>0 ?

Thank's for any replies :)

1 2 3 4 5 6 7 Last Page 1 of 21