Maple 2017 Questions and Posts

These are Posts and Questions associated with the product, Maple 2017

I am using Maple 2017 and the following equations gives me in correct result when I run `maple m.mpl` in terminal, however, when I run in using the GUI, the result is correct. (one result is postive while one is negative)

 

 

res := solve({
T000000=1/(1*4.57*10^(-06)+1*2.07*10^(-06)+1*2.83*10^(-06)) + T100000*1*4.57*10^(-06)/(1*4.57*10^(-06)+1*2.07*10^(-06)+1*2.83*10^(-06)) + T010000*1*2.07*10^(-06)/(1*4.57*10^(-06)+1*2.07*10^(-06)+1*2.83*10^(-06)) + T000010*1*2.83*10^(-06)/(1*4.57*10^(-06)+1*2.07*10^(-06)+1*2.83*10^(-06)) ,
T000010=1/(1*4.57*10^(-06)+1*2.07*10^(-06)+4) + T100010*1*4.57*10^(-06)/(1*4.57*10^(-06)+1*2.07*10^(-06)+4) + T010010*1*2.07*10^(-06)/(1*4.57*10^(-06)+1*2.07*10^(-06)+4) + T000000*4/(1*4.57*10^(-06)+1*2.07*10^(-06)+4) ,
T010000=1/(1*4.57*10^(-06)+1*2.83*10^(-06)+4) + T110000*1*4.57*10^(-06)/(1*4.57*10^(-06)+1*2.83*10^(-06)+4) + T010010*1*2.83*10^(-06)/(1*4.57*10^(-06)+1*2.83*10^(-06)+4) + T000000*4/(1*4.57*10^(-06)+1*2.83*10^(-06)+4) ,
T010010=1/(1*4.57*10^(-06)+4) + T000010*4/2/(1*4.57*10^(-06)+4) + T010000*4/2/(1*4.57*10^(-06)+4) ,
T100000=1/(1*2.07*10^(-06)+1*2.83*10^(-06)+4) + T110000*1*2.07*10^(-06)/(1*2.07*10^(-06)+1*2.83*10^(-06)+4) + T100010*1*2.83*10^(-06)/(1*2.07*10^(-06)+1*2.83*10^(-06)+4) + T000000*4/(1*2.07*10^(-06)+1*2.83*10^(-06)+4) ,
T100010=1/(1*2.07*10^(-06)+4) + T000010*4/2/(1*2.07*10^(-06)+4) + T100000*4/2/(1*2.07*10^(-06)+4) ,
T110000=1/(1*2.83*10^(-06)+4) + T010000*4/2/(1*2.83*10^(-06)+4) + T100000*4/2/(1*2.83*10^(-06)+4) }, { T000000,T000010,T010000,T010010,T100000,T100010,T110000 }):
T0 := subs(res, T000000):
printf("%g\n", T0);

 

n is a Carmichael number iff for every prime factor p of n, p-1/n-1.

Question: How to find odd squarefree composite numbers n having k distinct prime divisors, and the property that exactly k-1 prime divisors satisfy the Carmichael requirement, p-1/n-1 ?

Examples: 231,1045,1635. In these cases k=3 and the prime divisors satisfying the criteria are the greatest and smallest. I have a code for this but would like to compute the general case, where the criteria is satisfied for precisely any k-1 divisors.

Any assistance greatly appreciated.

David. 

 

Hello everyone, I'm trying to run a simple calculation (Water flowing out of a pressurised container) using a combination of conservation of energy and conservation of mass. I have working models of the same system without pressurisation (purely gravity working) which work fine in Maple, but when re-writing the pressure as a function of the height of the water I receive the error:

"Error, (in DEtools/convertsys) unable to convert to an explicit first-order system".

 

The formula used is:

"Eq1:= -Rho_Water * A_Barrell * v_Barrel = Rho_Water * A_Nozzle * v_Nozzle"

Which returns:

"Eq1:= -25.23733555 * d/dt h_Water(t) = 0.5982 * (-190.1309944 - 13.64385474 * h_Water(t) + (d/dt h_Water(t))2)1/2"

With initial condition:

"ics1:= h_Water(0) = 0.2"

 

After giving the command:

"Sol1:= dsolve({Eq1, ics1}, numeric)"

Maple returns the aforementioned error. When trying to solve non-numerically the output is a list filled with "RootOf" and "_Z". Instinctively I would say the square root in the second part of the equation is the problem here, but I would not know how to fix this. Does anybody have a quick fix for this problem? Or is there a fundamental issue with the equation? Thank you in advance!

I'm trying to solve this set of two equations forn where (EQ1 and EQ2 are already défined in fontions of the followings variables (k, wr ,R,Pi), and i'm using the following loop 

 

eqns:={EQ1,EQ2}:

for i from 1 by 1 to 101 do R:=(i-1):S:=fsolve((eqns), {k, wr},{k=0..10,wr=0..10} ):v(i):=(subs(S,(wr))):w(i):=(subs(S,(k)))end do:
Error, invalid input: subs received fsolve({-0.6391108652e160*k+0.2384499927e160*wr+0.714075224e160*k^3-0.4729440685e160*wr^3-0.4025871558e160*k^5+0.1700629083e159*wr^5-0.4813673552e156*k^9+0.1033594302e160*k^7-0.1044324938e156*wr^7-0.1017755535e159*k^3*wr^4+0.2163976160e160*k^5*wr^2-0.7986601863e160*k^4*wr-0.2729449277e160*k^6*wr+0.8693579523e154*k^3*wr^6+0.4453377949e156*k^4*wr^5-0.2636332727e157*k^5*wr^4-0.5817233940e157*k^7*wr^2+0.5719400327e157*k^6*wr^3-0.2875232976e161*k^2*wr+0.2294793648e161*k*wr^2+0.1483050053e158*k^2*wr^5-0.3944893217e159*k^4*wr^3-0.464413477e159*k^2*wr^3+0.2760407324e157*k^8*wr+0.8238787577e156*k*wr^6-0.1081920595e...
 

i do get a solution for Pi/2 and Pi/3 but beyond this value i get the above error

Hi,

I am trying to write a code for the following simple recurrence:

a(1)=1,

a(n)+1prime—>a(n+1)=a(n)+1,

a(n)+1 composite —>a(n+1)=n+2

if a(n) even, or a(n)+ 3 if a(n) odd.

Data: 1,2,3,6,7,10,11,14,16,17.....

My first attempt is the following:

N:=10:

for k from 1 to N do

X:=1;

if isprime(X+1) then print(X+1);

elif not isprime(X+1) and mod(X,2)=0 

then print(X+2);

else print(X+3);

end if:

end do:

This does not work but I cannot see why. Would somebody mind to help me out with this?

 

Best regards

David.

 

 

 

Hi so the Maple 2017 software froze on the loading screen I have a MacBook Air 2018, I tried restarting my Mac but it says I have to Quit out of Maple 2017, however it isn't allowing me to do so, the software won't quit. Is there anyone that can help me out??? I would gladly appreciate it.

Hello

I am using Maple to solve a couple of differential equations.  Here is what I did so far

k := 141/10000;
yB0 := 296/1000;
e := -148/1000;
Ff0 := 67844/1000;
Far0 := 323066/1000;
FB0 := 135688/1000;
P0 := 10;
x0 := 0;
a := 38/1000;
dsys:={diff(x(w),w)=(k*((yB0*p(w)*(1 - x(w)))/(1 + e*x(w)))^(1/3)*(Ff0/(Far0 + FB0)*p(w)*((Ff0/FB0 - 1/2*x(w))/(1 + e*x(w))))^(2/3))/FB0,
diff(p(w),w)=P0*(-a)/(2*p(w)/P0)*(1 + e*x(w)),x(0)=x0,p(0)=P0}:
dsn1:≔dsolve(dsys,numeric,[x(w),p(w)],stiff=true);

Maple returns neither an error message or a solution.   I am sure I have mistyped something or did not understand how dsolve works at all.  

Can you help me out?

Many thanks

Ed

PS. How to plot the solution?  

 

 

 

Hi all,

I am trying to find numerical integration of a complex function (Bessel+ trigonometric function) in (r, theta). MAPLE is unable to solve it due to high memory allocation issues. Function is like this f(r.theta)=Bessel(1,r)+cos(theta)*f(r)+....50 terms.

I am using  evalf( Int(f(r,theta), [r=0..1, theta=0..Pi])).

Will term by term integration be helpful? How to do it in maple?

PS: If I decrease the number of digits, I get the result fast.
 

restart;

F1 := 0.1e10 * (0.55776153956804000740336392666745e0 * r ^ 2 - 0.18915469024923561670746189899598e-134609736 * BesselJ(0.0e0, 0.15157937163140142799278350422223e3 * r) + 0.10159683864017545475828989384714e-98384011 * BesselJ(0.0e0, 0.12958780324510399675374141784136e3 * r) + 0.59829761821461366846048256106725e-56462782 * BesselJ(0.0e0, 0.98170950730790781973537759160851e2 * r) + 0.14811094053601555275542685914404e-80227782 * BesselJ(0.0e0, 0.11702112189889242502757649460146e3 * r) + 0.33892512681723589723181533606428e-7313754 * BesselJ(0.0e0, 0.35332307550083865102634479022519e2 * r) - 0.51262328796358933950059817332311e-2254297 * BesselJ(0.0e0, 0.19615858510468242021125065884138e2 * r) - 0.12881247566594125484600726823569e-19254076 * BesselJ(0.0e0, 0.57327525437901010745090504243751e2 * r) + 0.11118751423887112574088244798447e-31252221 * BesselJ(0.0e0, 0.73036895225573834826506117569092e2 * r) - 0.51777724984261891154172697895593e-33998785 * BesselJ(0.0e0, 0.76178699584641457572852614623535e2 * r) + 0.12182571270348008146031905708415e-42932343 * BesselJ(0.0e0, 0.85604019436350230965949425493380e2 * r) + 0.40737194122764952321439991068058e-36860993 * BesselJ(0.0e0, 0.79320487175476299391184484872488e2 * r) - 0.50622470024129990724764923292822e-6070573 * BesselJ(0.0e0, 0.32189679910974403626622984104460e2 * r) - 0.46336835054606228289459855037304e-46141486 * BesselJ(0.0e0, 0.88745767144926306903735916434854e2 * r) + 0.13326755919882635551499433439984e-71843536 * BesselJ(0.0e0, 0.11073775478089921510860865288827e3 * r) - 0.51549643524094258017297656487619e-15264332 * BesselJ(0.0e0, 0.51043535183571509468733034633224e2 * r) + 0.63020619016879105779529017065422e-17201382 * BesselJ(0.0e0, 0.54185553641061320532099966214534e2 * r) - 0.34143530857990731804462883496266e-75977837 * BesselJ(0.0e0, 0.11387944084759499813488417492843e3 * r) + 0.29817206128159554191843363526765e-49466273 * BesselJ(0.0e0, 0.91887504251694985280553622214490e2 * r) - 0.32466998108445575875801048023258e-52906705 * BesselJ(0.0e0, 0.95029231808044695268050998187174e2 * r) - 0.18661427630098737592148946513116e-60134503 * BesselJ(0.0e0, 0.10131266182303873013714105638865e3 * r) - 0.88067954684538428870806207522441e-67824881 * BesselJ(0.0e0, 0.10759606325950917218267036427761e3 * r) + 0.13287757851408088906808371290053e-1290876``98 * BesselJ(0.0e0, 0.14843772662034223039593927702627e3 * r) - 0.28491383339723867983586755114008e-93671487 * BesselJ(0.0e0, 0.12644613869851659569779448049584e3 * r) + 0.44151440493072282554074854252808e-21422416 * BesselJ(0.0e0, 0.60469457845347491559398749808383e2 * r) - 0.25433459757254658126695515265514e-23706400 * BesselJ(0.0e0, 0.63611356698481232631039762417874e2 * r) + 0.31838472287249562307154488541348e-118390557 * BesselJ(0.0e0, 0.14215442965585902903270090809976e3 * r) + 0.24664036351722993558633516210405e-26106029 * BesselJ(0.0e0, 0.66753226734098493415305259750042e2 * r) - 0.35291670105094410350434844041935e-8672580 * BesselJ(0.0e0, 0.38474766234771615112052197557717e2 * r) + 0.58664491893391140222815167210588e-10147051 * BesselJ(0.0e0, 0.41617094212814450885863516805060e2 * r) - 0.15835272073861680035000959411566e-11737166 * BesselJ(0.0e0, 0.44759318997652821732779352713212e2 * r) + 0.70213789662657167106991346854437e-13442927 * BesselJ(0.0e0, 0.47901460887185447121274008722508e2 * r) + 0.20203042047105171656770921613101e-86016 * BesselJ(0.0e0, 0.38317059702075123156144358863082e1 * r) + 0.45595799288913858149685893872177e-140247419 * BesselJ(0.0e0, 0.15472101451628595352476655565184e3 * r) - 0.18611154629569865685380386607775e-146000746 * BesselJ(0.0e0, 0.15786265540193029780509466960866e3 * r) + 0.98529688671644920915913795962299e-63921870 * BesselJ(0.0e0, 0.10445436579128276007136342813961e3 * r) - 0.15806285101030450527944027463056e-123681305 * BesselJ(0.0e0, 0.14529607934519590723242215085501e3 * r) - 0.40315574736579460691059726643094e-28621303 * BesselJ(0.0e0, 0.69895071837495773969730536435500e2 * r) + 0.62723521218202757338090566184844e-108155995 * BesselJ(0.0e0, 0.13587112236478900059180156821946e3 * r) - 0.10859734567264554119513113490716e-113215453 * BesselJ(0.0e0, 0.13901277738865970417843354613596e3 * r) - 0.54175511325922018873646654014932e-39838846 * BesselJ(0.0e0, 0.82462259914373556453986610648781e2 * r) + 0.11283650227585469604741653680022e-4943036 * BesselJ(0.0e0, 0.29046828534916855066647819883532e2 * r) - 0.61345791140260163801601678872534e-103212181 * BesselJ(0.0e0, 0.13272946438850961588677459735175e3 * r) - 0.10878629914720505255262338938331e-84593372 * BesselJ(0.0e0, 0.12016279832814900375811940782917e3 * r) - 0.35054349658929943485990383440882e-3931145 * BesselJ(0.0e0, 0.25903672087618382625495855445980e2 * r) + 0.13529453916914935758397358737774e-89074607 * BesselJ(0.0e0, 0.12330447048863571801676003206877e3 * r) + 0.13471689526126410315073637771645e-3034898 * BesselJ(0.0e0, 0.22760084380592771898053005152182e2 * r) - 0.21295581245266175979652384428576e-288353 * BesselJ(0.0e0, 0.70155866698156187535370499814765e1 * r) + 0.46293568384524693637583038682636e-606366 * BesselJ(0.0e0, 0.10173468135062722077185711776776e2 * r) - 0.65373336840252622743371660187403e-1040030 * BesselJ(0.0e0, 0.13323691936314223032393684126948e2 * r) + 0.12271878942218097649114096289979e-1589340 * BesselJ(0.0e0, 0.16470630050877632812552460470990e2 * r) + 0.30096533794321654779481815801012e5) * (-0.84195432401461277308031602263610e-5 * r ^ 2 - 0.59149959490724929627371164952978e-2 * r ^ 6 * cos(0.6e1 * theta) + 0.44528672504236299477606103483348e-2 * r ^ 9 * cos(0.9e1 * theta) + 0.2112306765385091377525007041829e-2 * r ^ 25 * cos(0.25e2 * theta) - 0.67200617360940427597733246769568e-3 * r ^ 4 * cos(0.4e1 * theta) + 0.8077651557524848874997646779728e-4 * r ^ 38 * cos(0.38e2 * theta) + 0.6431431133931729186611840353106e-3 * r ^ 39 * cos(0.39e2 * theta) + 0.6638764085868884552072751263020e-3 * r ^ 40 * cos(0.40e2 * theta) + 0.3077586813267194148977094233961e-3 * r ^ 41 * cos(0.41e2 * theta) - 0.1856408707409825202502168626613e-3 * r ^ 42 * cos(0.42e2 * theta) - 0.4195028383398335941571877904622e-3 * r ^ 43 * cos(0.43e2 * theta) - 0.3706398326158304378037548737582e-3 * r ^ 44 * cos(0.44e2 * theta) - 0.7999587757612915190037434403564e-4 * r ^ 45 * cos(0.45e2 * theta) + 0.1737050010593172373976692973078e-3 * r ^ 46 * cos(0.46e2 * theta) + 0.2156346448293426610250334073280e-3 * r ^ 47 * cos(0.47e2 * theta) + 0.8688707406587637755715273073496e-4 * r ^ 48 * cos(0.48e2 * theta) - 0.2566545888070136544474329645476e-4 * r ^ 49 * cos(0.49e2 * theta) + 0.10879633813910334336257501999693e-1 * cos(theta) * r + 0.1887562703232630941270016328998e-2 * r ^ 24 * cos(0.24e2 * theta) + 0.9513343462787182229625573235371e-3 * r ^ 26 * cos(0.26e2 * theta) - 0.6163648649547716429383661026270e-3 * r ^ 27 * cos(0.27e2 * theta) - 0.1638476483444926784339005153548e-2 * r ^ 28 * cos(0.28e2 * theta) - 0.1544747773264052898936010069036e-2 * r ^ 29 * cos(0.29e2 * theta) - 0.5206686266979668543527923877478e-3 * r ^ 30 * cos(0.30e2 * theta) + 0.7031766719478684183248753358164e-3 * r ^ 31 * cos(0.31e2 * theta) + 0.1364403772746535517159915014059e-2 * r ^ 32 * cos(0.32e2 * theta) + 0.10540246948583098852767644351809e-2 * r ^ 33 * cos(0.33e2 * theta) + 0.1949337811874134263703020015791e-3 * r ^ 34 * cos(0.34e2 * theta) - 0.7191715359288498000802128285804e-3 * r ^ 35 * cos(0.35e2 * theta) - 0.10227876151057534138247065986153e-2 * r ^ 36 * cos(0.36e2 * theta) - 0.6867126825080510201446558832207e-3 * r ^ 37 * cos(0.37e2 * theta) - 0.51907452513946892830363140141895e-2 * r ^ 5 * cos(0.5e1 * theta) + 0.15481206149695126077925147166938e-2 * r ^ 11 * cos(0.11e2 * theta) - 0.18891064144929437714573633077525e-2 * r ^ 12 * cos(0.12e2 * theta) - 0.3811736195725823688361734620913e-2 * r ^ 13 * cos(0.13e2 * theta) - 0.32257343081162300403533436479469e-2 * r ^ 14 * cos(0.14e2 * theta) - 0.6456518231629053621129825002098e-3 * r ^ 15 * cos(0.15e2 * theta) + 0.20319096805014454478199422911684e-2 * r ^ 16 * cos(0.16e2 * theta) + 0.3233144446775015541635116158538e-2 * r ^ 17 * cos(0.17e2 * theta) + 0.23137228128708316785559166203584e-2 * r ^ 18 * cos(0.18e2 * theta) + 0.6898483226498941349817978084256e-4 * r ^ 19 * cos(0.19e2 * theta) - 0.20285262491678306920628881668352e-2 * r ^ 20 * cos(0.20e2 * theta) - 0.2671173199674743523515178373090e-2 * r ^ 21 * cos(0.21e2 * theta) - 0.15775142288031750532503075313091e-2 * r ^ 22 * cos(0.22e2 * theta) + 0.3622094777240520457049718035053e-3 * r ^ 23 * cos(0.23e2 * theta) + 0.14579067481459940998484958894370e-2 * r ^ 8 * cos(0.8e1 * theta) + 0.43385218600667457865829805287215e-2 * r ^ 10 * cos(0.10e2 * theta) - 0.29324228962818139404116534560943e-2 * r ^ 7 * cos(0.7e1 * theta) + 0.54771662980043457997274959739776e-2 * r ^ 3 * cos(0.3e1 * theta) - 0.11907324829492592983826593268542e-1 + 0.99737018277250342942042004599405e6 * (0.10375843065514893709650453544669e-7 * r ^ 4 - 0.24066724220589275560649004814238e-8 * r ^ 2) * cos(0.2e1 * theta) / r ^ 2 - 0.18524693450872080736996040590111e-1589345 * BesselJ(0.0e0, 0.16470630050877632812552460470990e2 * r) - 0.20335836094200343189896872255293e-3034903 * BesselJ(0.0e0, 0.22760084380592771898053005152182e2 * r) + 0.32146186927377989454999075542184e-288358 * BesselJ(0.0e0, 0.70155866698156187535370499814765e1 * r) - 0.69881243704258704205303920297122e-606371 * BesselJ(0.0e0, 0.10173468135062722077185711776776e2 * r) + 0.98682608468381340045946744187651e-1040035 * BesselJ(0.0e0, 0.13323691936314223032393684126948e2 * r) - 0.20423032817438260168628393904163e-89074612 * BesselJ(0.0e0, 0.12330447048863571801676003206877e3 * r) + 0.16393027894394588837550747507414e-113215458 * BesselJ(0.0e0, 0.13901277738865970417843354613596e3 * r) + 0.81779224239606095156885663441587e-39838851 * BesselJ(0.0e0, 0.82462259914373556453986610648781e2 * r) - 0.17032938676879018403348115316985e-4943041 * BesselJ(0.0e0, 0.29046828534916855066647819883532e2 * r) + 0.92602932340297485357655867631396e-103212186 * BesselJ(0.0e0, 0.13272946438850961588677459735175e3 * r) + 0.16421550871268572218657911635481e-84593377 * BesselJ(0.0e0, 0.12016279832814900375811940782917e3 * r) + 0.52915375437527581357423578813141e-3931150 * BesselJ(0.0e0, 0.25903672087618382625495855445980e2 * r) + 0.77815414272085141864206462412262e-15264337 * BesselJ(0.0e0, 0.51043535183571509468733034633224e2 * r) - 0.95131124896907983486241420998755e-17201387 * BesselJ(0.0e0, 0.54185553641061320532099966214534e2 * r) + 0.51540472771347914200070162230077e-75977842 * BesselJ(0.0e0, 0.11387944084759499813488417492843e3 * r) - 0.45009782583936088946734982085640e-49466278 * BesselJ(0.0e0, 0.91887504251694985280553622214490e2 * r) + 0.49009706668463083583947296301775e-52906710 * BesselJ(0.0e0, 0.95029231808044695268050998187174e2 * r) + 0.28169869327339522936720076403132e-60134508 * BesselJ(0.0e0, 0.10131266182303873013714105638865e3 * r) + 0.13294067445237467596212175135530e-67824885 * BesselJ(0.0e0, 0.10759606325950917218267036427761e3 * r) - 0.20058186851887448492658350947366e-129087703 * BesselJ(0.0e0, 0.14843772662034223039593927702627e3 * r) + 0.43008421517583172146652387481621e-93671492 * BesselJ(0.0e0, 0.12644613869851659569779448049584e3 * r) - 0.66647650649066255093532041895905e-21422421 * BesselJ(0.0e0, 0.60469457845347491559398749808383e2 * r) + 0.38392413062141555362678468281752e-23706405 * BesselJ(0.0e0, 0.63611356698481232631039762417874e2 * r) - 0.48060931976467196435085585083844e-118390562 * BesselJ(0.0e0, 0.14215442965585902903270090809976e3 * r) - 0.37230950111886614086127736374754e-26106034 * BesselJ(0.0e0, 0.66753226734098493415305259750042e2 * r) + 0.53273616301499657528989740768063e-8672585 * BesselJ(0.0e0, 0.38474766234771615112052197557717e2 * r) - 0.88555447286690435479201942884554e-10147056 * BesselJ(0.0e0, 0.41617094212814450885863516805060e2 * r) + 0.23903720225781678909977638730792e-11737171 * BesselJ(0.0e0, 0.44759318997652821732779352713212e2 * r) - 0.10598938725267772368055360453741e-13442931 * BesselJ(0.0e0, 0.47901460887185447121274008722508e2 * r) - 0.30496972994915901977125629292157e-86021 * BesselJ(0.0e0, 0.38317059702075123156144358863082e1 * r) - 0.68827944640884252540240135035619e-140247424 * BesselJ(0.0e0, 0.15472101451628595352476655565184e3 * r) + 0.28093981036064987725074202641260e-146000751 * BesselJ(0.0e0, 0.15786265540193029780509466960866e3 * r) - 0.14873291099481638062068892057166e-63921874 * BesselJ(0.0e0, 0.10445436579128276007136342813961e3 * r) + 0.23859963700126918177896460503756e-123681310 * BesselJ(0.0e0, 0.14529607934519590723242215085501e3 * r) + 0.60857319959503281138409206408861e-28621308 * BesselJ(0.0e0, 0.69895071837495773969730536435500e2 * r) - 0.94682648696048924172260521336169e-108156000 * BesselJ(0.0e0, 0.13587112236478900059180156821946e3 * r) + 0.28553350861432233569650200943679e-134609741 * BesselJ(0.0e0, 0.15157937163140142799278350422223e3 * r) - 0.15336284689969342456370426833116e-98384016 * BesselJ(0.0e0, 0.12958780324510399675374141784136e3 * r) - 0.90314449987634539477129986599199e-56462787 * BesselJ(0.0e0, 0.98170950730790781973537759160851e2 * r) - 0.22357699119008062011176340166029e-80227787 * BesselJ(0.0e0, 0.11702112189889242502757649460146e3 * r) - 0.51161554857649418772612124539227e-7313759 * BesselJ(0.0e0, 0.35332307550083865102634479022519e2 * r) + 0.77381705849741819343661724258774e-2254302 * BesselJ(0.0e0, 0.19615858510468242021125065884138e2 * r) + 0.19444549898144465612468716205102e-19254081 * BesselJ(0.0e0, 0.57327525437901010745090504243751e2 * r) - 0.16784020006534355647552255243370e-31252226 * BesselJ(0.0e0, 0.73036895225573834826506117569092e2 * r) + 0.78159708666719140456536882061442e-33998790 * BesselJ(0.0e0, 0.76178699584641457572852614623535e2 * r) - 0.18389881393811040868057686236036e-42932348 * BesselJ(0.0e0, 0.85604019436350230965949425493380e2 * r) - 0.61493764461507094694745129374163e-36860998 * BesselJ(0.0e0, 0.79320487175476299391184484872488e2 * r) + 0.76415823798329557427383241351545e-6070578 * BesselJ(0.0e0, 0.32189679910974403626622984104460e2 * r) + 0.69946555772905592227422733556311e-46141491 * BesselJ(0.0e0, 0.88745767144926306903735916434854e2 * r) - 0.20117055364775216522977716192738e-71843541 * BesselJ(0.0e0, 0.11073775478089921510860865288827e3 * r) + 0.24003433134624560908493351044670e-2 * cos(0.2e1 * theta)) * r;

0.1e10*(30096.533794321654779481815801012+.55776153956804000740336392666745*r^2-0.18915469024923561670746189899598e-134609736*BesselJ(0., 151.57937163140142799278350422223*r)+0.10159683864017545475828989384714e-98384011*BesselJ(0., 129.58780324510399675374141784136*r)+0.59829761821461366846048256106725e-56462782*BesselJ(0., 98.170950730790781973537759160851*r)+0.14811094053601555275542685914404e-80227782*BesselJ(0., 117.02112189889242502757649460146*r)+0.33892512681723589723181533606428e-7313754*BesselJ(0., 35.332307550083865102634479022519*r)-0.51262328796358933950059817332311e-2254297*BesselJ(0., 19.615858510468242021125065884138*r)-0.12881247566594125484600726823569e-19254076*BesselJ(0., 57.327525437901010745090504243751*r)+0.11118751423887112574088244798447e-31252221*BesselJ(0., 73.036895225573834826506117569092*r)-0.51777724984261891154172697895593e-33998785*BesselJ(0., 76.178699584641457572852614623535*r)+0.12182571270348008146031905708415e-42932343*BesselJ(0., 85.604019436350230965949425493380*r)+0.40737194122764952321439991068058e-36860993*BesselJ(0., 79.320487175476299391184484872488*r)-0.50622470024129990724764923292822e-6070573*BesselJ(0., 32.189679910974403626622984104460*r)-0.46336835054606228289459855037304e-46141486*BesselJ(0., 88.745767144926306903735916434854*r)+0.13326755919882635551499433439984e-71843536*BesselJ(0., 110.73775478089921510860865288827*r)-0.51549643524094258017297656487619e-15264332*BesselJ(0., 51.043535183571509468733034633224*r)+0.63020619016879105779529017065422e-17201382*BesselJ(0., 54.185553641061320532099966214534*r)-0.34143530857990731804462883496266e-75977837*BesselJ(0., 113.87944084759499813488417492843*r)+0.29817206128159554191843363526765e-49466273*BesselJ(0., 91.887504251694985280553622214490*r)-0.32466998108445575875801048023258e-52906705*BesselJ(0., 95.029231808044695268050998187174*r)-0.18661427630098737592148946513116e-60134503*BesselJ(0., 101.31266182303873013714105638865*r)-0.88067954684538428870806207522441e-67824881*BesselJ(0., 107.59606325950917218267036427761*r)+0.13287757851408088906808371290053e-129087698*BesselJ(0., 148.43772662034223039593927702627*r)-0.28491383339723867983586755114008e-93671487*BesselJ(0., 126.44613869851659569779448049584*r)+0.44151440493072282554074854252808e-21422416*BesselJ(0., 60.469457845347491559398749808383*r)-0.25433459757254658126695515265514e-23706400*BesselJ(0., 63.611356698481232631039762417874*r)+0.31838472287249562307154488541348e-118390557*BesselJ(0., 142.15442965585902903270090809976*r)+0.24664036351722993558633516210405e-26106029*BesselJ(0., 66.753226734098493415305259750042*r)-0.35291670105094410350434844041935e-8672580*BesselJ(0., 38.474766234771615112052197557717*r)+0.58664491893391140222815167210588e-10147051*BesselJ(0., 41.617094212814450885863516805060*r)-0.15835272073861680035000959411566e-11737166*BesselJ(0., 44.759318997652821732779352713212*r)+0.70213789662657167106991346854437e-13442927*BesselJ(0., 47.901460887185447121274008722508*r)+0.20203042047105171656770921613101e-86016*BesselJ(0., 3.8317059702075123156144358863082*r)+0.45595799288913858149685893872177e-140247419*BesselJ(0., 154.72101451628595352476655565184*r)-0.18611154629569865685380386607775e-146000746*BesselJ(0., 157.86265540193029780509466960866*r)+0.98529688671644920915913795962299e-63921870*BesselJ(0., 104.45436579128276007136342813961*r)-0.15806285101030450527944027463056e-123681305*BesselJ(0., 145.29607934519590723242215085501*r)-0.40315574736579460691059726643094e-28621303*BesselJ(0., 69.895071837495773969730536435500*r)+0.62723521218202757338090566184844e-108155995*BesselJ(0., 135.87112236478900059180156821946*r)-0.10859734567264554119513113490716e-113215453*BesselJ(0., 139.01277738865970417843354613596*r)-0.54175511325922018873646654014932e-39838846*BesselJ(0., 82.462259914373556453986610648781*r)+0.11283650227585469604741653680022e-4943036*BesselJ(0., 29.046828534916855066647819883532*r)-0.61345791140260163801601678872534e-103212181*BesselJ(0., 132.72946438850961588677459735175*r)-0.10878629914720505255262338938331e-84593372*BesselJ(0., 120.16279832814900375811940782917*r)-0.35054349658929943485990383440882e-3931145*BesselJ(0., 25.903672087618382625495855445980*r)+0.13529453916914935758397358737774e-89074607*BesselJ(0., 123.30447048863571801676003206877*r)+0.13471689526126410315073637771645e-3034898*BesselJ(0., 22.760084380592771898053005152182*r)-0.21295581245266175979652384428576e-288353*BesselJ(0., 7.0155866698156187535370499814765*r)+0.46293568384524693637583038682636e-606366*BesselJ(0., 10.173468135062722077185711776776*r)-0.65373336840252622743371660187403e-1040030*BesselJ(0., 13.323691936314223032393684126948*r)+0.12271878942218097649114096289979e-1589340*BesselJ(0., 16.470630050877632812552460470990*r))*(-0.11907324829492592983826593268542e-1-0.59149959490724929627371164952978e-2*r^6*cos(6.*theta)+0.44528672504236299477606103483348e-2*r^9*cos(9.*theta)+0.2112306765385091377525007041829e-2*r^25*cos(25.*theta)-0.67200617360940427597733246769568e-3*r^4*cos(4.*theta)+0.8077651557524848874997646779728e-4*r^38*cos(38.*theta)+0.6431431133931729186611840353106e-3*r^39*cos(39.*theta)+0.6638764085868884552072751263020e-3*r^40*cos(40.*theta)+0.3077586813267194148977094233961e-3*r^41*cos(41.*theta)-0.1856408707409825202502168626613e-3*r^42*cos(42.*theta)-0.4195028383398335941571877904622e-3*r^43*cos(43.*theta)-0.3706398326158304378037548737582e-3*r^44*cos(44.*theta)-0.7999587757612915190037434403564e-4*r^45*cos(45.*theta)+0.1737050010593172373976692973078e-3*r^46*cos(46.*theta)+0.2156346448293426610250334073280e-3*r^47*cos(47.*theta)+0.8688707406587637755715273073496e-4*r^48*cos(48.*theta)-0.2566545888070136544474329645476e-4*r^49*cos(49.*theta)+0.10879633813910334336257501999693e-1*cos(theta)*r+0.1887562703232630941270016328998e-2*r^24*cos(24.*theta)+0.9513343462787182229625573235371e-3*r^26*cos(26.*theta)-0.6163648649547716429383661026270e-3*r^27*cos(27.*theta)-0.1638476483444926784339005153548e-2*r^28*cos(28.*theta)-0.1544747773264052898936010069036e-2*r^29*cos(29.*theta)-0.5206686266979668543527923877478e-3*r^30*cos(30.*theta)+0.7031766719478684183248753358164e-3*r^31*cos(31.*theta)+0.1364403772746535517159915014059e-2*r^32*cos(32.*theta)+0.10540246948583098852767644351809e-2*r^33*cos(33.*theta)+0.1949337811874134263703020015791e-3*r^34*cos(34.*theta)-0.7191715359288498000802128285804e-3*r^35*cos(35.*theta)-0.10227876151057534138247065986153e-2*r^36*cos(36.*theta)-0.6867126825080510201446558832207e-3*r^37*cos(37.*theta)-0.51907452513946892830363140141895e-2*r^5*cos(5.*theta)+0.15481206149695126077925147166938e-2*r^11*cos(11.*theta)-0.18891064144929437714573633077525e-2*r^12*cos(12.*theta)-0.3811736195725823688361734620913e-2*r^13*cos(13.*theta)-0.32257343081162300403533436479469e-2*r^14*cos(14.*theta)-0.6456518231629053621129825002098e-3*r^15*cos(15.*theta)+0.20319096805014454478199422911684e-2*r^16*cos(16.*theta)+0.3233144446775015541635116158538e-2*r^17*cos(17.*theta)+0.23137228128708316785559166203584e-2*r^18*cos(18.*theta)+0.6898483226498941349817978084256e-4*r^19*cos(19.*theta)-0.20285262491678306920628881668352e-2*r^20*cos(20.*theta)-0.2671173199674743523515178373090e-2*r^21*cos(21.*theta)-0.15775142288031750532503075313091e-2*r^22*cos(22.*theta)+0.3622094777240520457049718035053e-3*r^23*cos(23.*theta)+0.14579067481459940998484958894370e-2*r^8*cos(8.*theta)+0.43385218600667457865829805287215e-2*r^10*cos(10.*theta)-0.29324228962818139404116534560943e-2*r^7*cos(7.*theta)+0.54771662980043457997274959739776e-2*r^3*cos(3.*theta)-0.84195432401461277308031602263610e-5*r^2+0.28553350861432233569650200943679e-134609741*BesselJ(0., 151.57937163140142799278350422223*r)-0.15336284689969342456370426833116e-98384016*BesselJ(0., 129.58780324510399675374141784136*r)-0.90314449987634539477129986599199e-56462787*BesselJ(0., 98.170950730790781973537759160851*r)-0.22357699119008062011176340166029e-80227787*BesselJ(0., 117.02112189889242502757649460146*r)-0.51161554857649418772612124539227e-7313759*BesselJ(0., 35.332307550083865102634479022519*r)+0.77381705849741819343661724258774e-2254302*BesselJ(0., 19.615858510468242021125065884138*r)+0.19444549898144465612468716205102e-19254081*BesselJ(0., 57.327525437901010745090504243751*r)-0.16784020006534355647552255243370e-31252226*BesselJ(0., 73.036895225573834826506117569092*r)+0.78159708666719140456536882061442e-33998790*BesselJ(0., 76.178699584641457572852614623535*r)-0.18389881393811040868057686236036e-42932348*BesselJ(0., 85.604019436350230965949425493380*r)-0.61493764461507094694745129374163e-36860998*BesselJ(0., 79.320487175476299391184484872488*r)+0.76415823798329557427383241351545e-6070578*BesselJ(0., 32.189679910974403626622984104460*r)+0.69946555772905592227422733556311e-46141491*BesselJ(0., 88.745767144926306903735916434854*r)-0.20117055364775216522977716192738e-71843541*BesselJ(0., 110.73775478089921510860865288827*r)+0.77815414272085141864206462412262e-15264337*BesselJ(0., 51.043535183571509468733034633224*r)-0.95131124896907983486241420998755e-17201387*BesselJ(0., 54.185553641061320532099966214534*r)+0.51540472771347914200070162230077e-75977842*BesselJ(0., 113.87944084759499813488417492843*r)-0.45009782583936088946734982085640e-49466278*BesselJ(0., 91.887504251694985280553622214490*r)+0.49009706668463083583947296301775e-52906710*BesselJ(0., 95.029231808044695268050998187174*r)+0.28169869327339522936720076403132e-60134508*BesselJ(0., 101.31266182303873013714105638865*r)+0.13294067445237467596212175135530e-67824885*BesselJ(0., 107.59606325950917218267036427761*r)-0.20058186851887448492658350947366e-129087703*BesselJ(0., 148.43772662034223039593927702627*r)+0.43008421517583172146652387481621e-93671492*BesselJ(0., 126.44613869851659569779448049584*r)-0.66647650649066255093532041895905e-21422421*BesselJ(0., 60.469457845347491559398749808383*r)+0.38392413062141555362678468281752e-23706405*BesselJ(0., 63.611356698481232631039762417874*r)-0.48060931976467196435085585083844e-118390562*BesselJ(0., 142.15442965585902903270090809976*r)-0.37230950111886614086127736374754e-26106034*BesselJ(0., 66.753226734098493415305259750042*r)+0.53273616301499657528989740768063e-8672585*BesselJ(0., 38.474766234771615112052197557717*r)-0.88555447286690435479201942884554e-10147056*BesselJ(0., 41.617094212814450885863516805060*r)+0.23903720225781678909977638730792e-11737171*BesselJ(0., 44.759318997652821732779352713212*r)-0.10598938725267772368055360453741e-13442931*BesselJ(0., 47.901460887185447121274008722508*r)-0.30496972994915901977125629292157e-86021*BesselJ(0., 3.8317059702075123156144358863082*r)-0.68827944640884252540240135035619e-140247424*BesselJ(0., 154.72101451628595352476655565184*r)+0.28093981036064987725074202641260e-146000751*BesselJ(0., 157.86265540193029780509466960866*r)-0.14873291099481638062068892057166e-63921874*BesselJ(0., 104.45436579128276007136342813961*r)+0.23859963700126918177896460503756e-123681310*BesselJ(0., 145.29607934519590723242215085501*r)+0.60857319959503281138409206408861e-28621308*BesselJ(0., 69.895071837495773969730536435500*r)-0.94682648696048924172260521336169e-108156000*BesselJ(0., 135.87112236478900059180156821946*r)+0.16393027894394588837550747507414e-113215458*BesselJ(0., 139.01277738865970417843354613596*r)+0.81779224239606095156885663441587e-39838851*BesselJ(0., 82.462259914373556453986610648781*r)-0.17032938676879018403348115316985e-4943041*BesselJ(0., 29.046828534916855066647819883532*r)+0.92602932340297485357655867631396e-103212186*BesselJ(0., 132.72946438850961588677459735175*r)+0.16421550871268572218657911635481e-84593377*BesselJ(0., 120.16279832814900375811940782917*r)+0.52915375437527581357423578813141e-3931150*BesselJ(0., 25.903672087618382625495855445980*r)-0.20423032817438260168628393904163e-89074612*BesselJ(0., 123.30447048863571801676003206877*r)-0.20335836094200343189896872255293e-3034903*BesselJ(0., 22.760084380592771898053005152182*r)+0.32146186927377989454999075542184e-288358*BesselJ(0., 7.0155866698156187535370499814765*r)-0.69881243704258704205303920297122e-606371*BesselJ(0., 10.173468135062722077185711776776*r)+0.98682608468381340045946744187651e-1040035*BesselJ(0., 13.323691936314223032393684126948*r)-0.18524693450872080736996040590111e-1589345*BesselJ(0., 16.470630050877632812552460470990*r)+0.24003433134624560908493351044670e-2*cos(2.*theta)+997370.18277250342942042004599405*(0.10375843065514893709650453544669e-7*r^4-0.24066724220589275560649004814238e-8*r^2)*cos(2.*theta)/r^2)*r

(1)

evalf(subs(r=1,theta=Pi/4,F1))

0.7135632392e12

(2)

Digits:=16;

16

(3)

int_F1:=evalf(Int(F1,[theta=Pi/4..2*Pi-Pi/4,r=0..1]));

Warning,  computation interrupted

 

``


 

Download Maple_prime_integration.mw

Thanks.

Hi, I am trying to solve a recurrence with rsolve:

rsolve({f(1) = 1, f(n) = n + sum(f(i), i=1..n-1)}, f)

Unfontunately, maple just prints the same function without evaluation:

rsolve({f(1) = 1, f(n) = n + sum(f(i), i=1..n-1)}, f)

How to get the expected result 2^n - 1 from maple?

Hi all, I would be most grateful if I could get some help with solving the tasks below using Maple.

Given the function: mx''(t)+cx'(t)+kx(t)= F_y(t)

  1. Rewrite the equation above to a system of 1. order differential equations, by defining the two variables x_1(t) = x(t) and x_2(t)=x'(t) (Hint what is x'(t)?) This gives the first differential equation in the system. What is x_2'(t)?
     
  2. Write the equations as a linear system when the outer force F_y(t) is the influence and the position x_1(t) is the answer, in other words give the system matrix A and the vectors b and r.
     
  3. I'm given the constants m = 5kg, c = 3Ns/m and k = 20 N/m and I'm trying to find the transfer function of the system.
     
  4. Give the systems transfer function H(s) and draw the graphs for the amplitude and phase characteristic.

Thank you!

 

 

Hi there

I'm an old user of Maple, but I've never been able to plot functions with unit. You can see my latest attempt down below

b := 120*Unit('mm');
h := 200*Unit('mm');
V := 8*Unit('kN');

I__x := (1/12)*b*h^3

Q(x):=(1/2)*((1/4)*h^2-(100*Unit('mm')-x)^2)*b 
tau(x):=V*Q(x)/(I__x*b)

plot(Q(x(Unit('mm')), units), x = 0*Unit('mm') .. 100*Unit('mm'))

Plot_function_with_units.mw

If anyone is able to help me with this problem, I would greatly appreciate it.

Hello everyone!

I'm having some problem with this equation:

solve(0.1 = 23.714*(-0.93205)^2/(20.3+61.4*.884^x), x)

I'm trying to solve for x, but i keeps saying "Warning, solutions may have been lost."

Any ideas?
 

hye, can someone help me to solve nonlinear schrodinger equation using maple? i attach with document

solution_nonlinear.pdf

Hi Maple Expert,

c*(r-1)*exp(x*beta)/((1+varphi*exp(x*beta))*(-varphi*exp(x*beta)*r+varphi*exp(x*beta)+1))

c = exp(exp(x*beta)*(r-1)/(1+varphi*exp(x*beta)))

with

ln(r) = varphi*exp(x*beta)*(r-1)/(1+varphi*exp(x*beta))-1

Please help me, and thank you in advance.

 

Regards,

Sarni

 

Maple gives me the incorrect answer to the hundredth place. (arithmetic.mw)

>15000*(1+.06/365)^(10*365)
>                        27330.47804

I tried using an exact fraction 15000*(1+(6/100)/365)^(10*365) as well.

First 6 7 8 9 10 11 12 Last Page 8 of 40