Maple 2019 Questions and Posts

These are Posts and Questions associated with the product, Maple 2019

I am using Maple to solve a system of ODEs numerically. Right now, I want to find the integration of the output of the system of ODEs. How it is possible to do this? 

F := dsolve(ODESys union ICs, {y0(t), y1(t), y2(t), y3(t)}, type = numeric)

Y0 := t -> rhs(op(2, F(t)))

Now, I want to find int(Y0,t=0..1).

How I can prove the following equation in red box.

Also, Pn(v) and qn(v) are the real combinations of half-integer Legendre functions.

For more details please see 

https://math.stackexchange.com/questions/2746660/potential-flow-around-a-torus-laplace-equation-in-toroidal-coordinates/3809487#3809487

Hello

I need Nu[a] in the label of y-axis.

i am writing      labels = [eta, 'Nu[a]'(eta)] but I am not getting. Please help me for writing correct code.

 

Here are 4 statements that attempt to use invlaplace on the exponential function. Two work, two don't.

Does anyone know why the two that don't work do that?

Thank you.

__________________________

with(inttrans);
[addtable, fourier, fouriercos, fouriersin, hankel, hilbert,   invfourier, invhilbert, invlaplace, invmellin, laplace, mellin,   savetable]
invlaplace(exp(-s),s,t);
                          Dirac(t - 1)
invlaplace(exp(s),s,t);
                    invlaplace(exp(s), s, t)
invlaplace(exp(s),s,t) assuming s<0,s::real;
                    invlaplace(exp(s), s, t)

invlaplace(exp(-s),s,t) assuming s<0,s::real;
                          Dirac(t - 1)
What is going on here?
 

Can anyone kindly tell me why isn't "evalm" working even with all the neccessary varaibles have corresponding values? 

Thank you!

Here is my code:

The Help page Physics/tensors-a complete guide states that spacetime metrics from Kramer et al. are referenced by chapter, section, and equation number, e.g., g_[[12, 16, 1]]. But there is no section 16 in Ch 12 and equations within each chapter are numbered sequentially without reference to section. By playing around it seems that in fact the first number is chapter, the second number is equation number, and the third number refers to subcases of the metric, when they are specified in the text. Is that correct?

Also, the output I get from say g_[[27, 27, 1]], or any other attempt  made, is just the metric, without any specification of the coordinates etc, which the Help pages susggest should be part of the output.

Hi.

I am calculating an integral but I cannot get the result.
Can you help me.
I provide the file.

Tank you

Regards

integral_doubt.mw
 

restart

Rm := 2.5*10^(-3)

0.25e-2

(1)

Lm := 10^(-3)

1/1000

(2)

Ms := 10.7*10^5

0.11e7

(3)

ICMr := `assuming`([Ms*(int((z(t)-Z)*((Rm^2+r(t)^2+(z(t)-Z)^2)*(int(sqrt(1-4*r(t)*Rm*sin(phi)^2/((Rm+r(t))^2+(z(t)-Z)^2)), phi = 0 .. (1/2)*Pi))/((Rm-r(t))^2+(z(t)-Z)^2)-(int(1/sqrt(1-4*r(t)*Rm*sin(phi)^2/((Rm+r(t))^2+(z(t)-Z)^2)), phi = 0 .. (1/2)*Pi)))/(sqrt((Rm+r(t))^2+(z(t)-Z)^2)*r(t)), Z = -Lm .. 0))/(2*Pi)], [0 <= r(t), r(t) <= 2.5*10^(-3)])

 

(12)

``

subs([r(t) = 0.24e-2, z(t) = 0.1e-2], ICMr)

 

(13)
 

 

   

 


 

Download integral_doubt.mw

In this figure, y axis scale is -1, -0.5,0,0.5,1.

i need that scale -1, -0.1, -0.2 -0.3......1

how to change?

 

How I can remove RootOf from the solution?

thanks.

root.mw

Hi,

I just wondering if I could write a variable as y' since when I try it, it will automatically diffrentiate the subject.

 

Thank you.

 

I have the following program which constructs the multiplication table, CI, for a matrix Lie algebra and evaluates the difference between CI's row dimension and its rank. The code is a little convoluted because "LieTable" formats the entries very strangely and forces incorrect rank values.

The matrix CI is constructed rather quickly (within a few seconds), and everything works well with "small" examples (up to 12 basis elements has evaluated within seconds). However, the example I've included is for a 27-dimensional Lie algebra. As I stated, CI is constructed quickly, even in larger examples, but the rank evaluation (i.e., LinearAlgebra:-Rank(CI)) has never completed for the example I've included. I let it run for about 3 hours before shutting it down.

I have an older Macbook Air which I am using to run these computations. Could this simply be an issue of not enough computing power?

I have attempted to import the matrix CI into Mathematica (to see if it was simply a limitation of Maple), but that's its own headache (reads entries of the matrix incorrectly).

 

Any recommendations would help. If this is an issue of computing power, I can get access to a more powerful system soon. It doesn't seem that the code itself would cause the issue, since it is not the construction of the matrix which is giving me issues, it is the evaluation of the rank. I am rather naive about Maple (and programming in general) though, so I may be wrong.

 

Index_and_Contact.mw

I have a position vector in 3D space of  <t,0,(2/3)t^(3/2)>,0<=t<=8. I found the unit tangent vector to be <1/((1+t)^(1/2)),0,(t^1/2)/((1+t)^(1/2))>. I am not sure how to graph the unit tangent vector and the position vector together. I attached the file I am working in.

 

Unit_Vector_Tangent.mwUnit_Vector_Tangent.mw

Hi,

Is there any way we could use Maple to simplify an equation,

Example: M= 2pqrst / uvw 

I would like a code or a way to separate some variables into one variable, where the expression would be M = 2Krst / w

which can be said that K = pq / uv

I know that I can use the simplify command but it's only worked for simpler expression but not complicated one.

Really need help from you guys. 

 

Thank you :)

 

I need to get fine curved figure.

please suggest command.   Please also tell 6 differnt markers like symbol = asterisk.

I am not geting value of F3.

question_1.mw
 

restart

A1 := diff(f[3](x), x, x, x, x)+2*R*(((A-1)*x+1)*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x))+(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x)*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x))+((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x)*(diff((A-1)*x+1, x))+((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x)*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x))+(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2)*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x))+(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2)*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x)))-L*R*((diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x))*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x, x))+(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x))*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x, x))+(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x))*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x, x))+3*(diff((A-1)*x+1, x))*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x, x))+3*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x))*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x, x))+3*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x))*(diff((A-1)*x+1, x, x))+2*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x))*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x))+2*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x))*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x))+2*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x))*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x))) = 0; Eq7 := dsolve({A1, f[3](0) = 0, f[3](1) = 0, (D(f[3]))(0) = 0, (D(f[3]))(1) = 0}, f[3](x))

(1)

``


 

Download question_1.mw

 

 

First 15 16 17 18 19 20 21 Last Page 17 of 48