Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

i want construct a series trail function for all pdf not just this one but this is a easy one, also after replacing the function How i can collect variable and make algebraic system for finding the constant of series function like a[20],a[10],a[00]. where i is number of derivative by x and n is number of derivative by t also n=0 and m=2 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(2)

declare(w(x, t))

w(x, t)*`will now be displayed as`*w

(3)

pde := diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x))+delta*(diff(u(x, t), `$`(x, 3))) = 0

diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x))+delta*(diff(diff(diff(u(x, t), x), x), x)) = 0

(4)

NULL

K := u(x, t) = a[20]*(diff(ln(w(x, t)), `$`(x, 2)))+a[10]*(diff(ln(w(x, t)), x))+a[0]

u(x, t) = a[20]*((diff(diff(w(x, t), x), x))/w(x, t)-(diff(w(x, t), x))^2/w(x, t)^2)+a[10]*(diff(w(x, t), x))/w(x, t)+a[0]

(5)

K1 := normal(eval(pde, K))

(w(x, t)^4*(diff(diff(w(x, t), x), x))*a[0]*a[10]+w(x, t)^4*(diff(diff(diff(w(x, t), x), x), x))*a[0]*a[20]+w(x, t)^4*(diff(diff(diff(diff(diff(w(x, t), x), x), x), x), x))*delta*a[20]+w(x, t)^4*(diff(diff(diff(diff(w(x, t), x), x), x), x))*delta*a[10]-3*w(x, t)^3*(diff(diff(w(x, t), x), x))^2*delta*a[10]+w(x, t)^3*(diff(diff(w(x, t), x), x))^2*a[10]*a[20]+w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))*a[10]^2+w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(diff(diff(w(x, t), x), x), x))*a[20]^2-w(x, t)^3*(diff(w(x, t), x))^2*a[0]*a[10]-3*w(x, t)^2*(diff(diff(w(x, t), x), x))^2*(diff(w(x, t), x))*a[20]^2+2*w(x, t)^2*(diff(w(x, t), x))^3*a[0]*a[20]-w(x, t)^2*(diff(w(x, t), x))^2*(diff(diff(diff(w(x, t), x), x), x))*a[20]^2+5*w(x, t)*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^3*a[20]^2-6*w(x, t)*(diff(w(x, t), x))^4*delta*a[10]+3*w(x, t)*(diff(w(x, t), x))^4*a[10]*a[20]-w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), t))*a[20]-a[10]*(diff(w(x, t), x))*(diff(w(x, t), t))*w(x, t)^3-2*w(x, t)^3*(diff(w(x, t), x))*(diff(diff(w(x, t), t), x))*a[20]+2*w(x, t)^2*(diff(w(x, t), t))*(diff(w(x, t), x))^2*a[20]-3*w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))*a[0]*a[20]-10*w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(diff(diff(w(x, t), x), x), x))*delta*a[20]-4*w(x, t)^3*(diff(w(x, t), x))*(diff(diff(diff(w(x, t), x), x), x))*delta*a[10]+w(x, t)^3*(diff(w(x, t), x))*(diff(diff(diff(w(x, t), x), x), x))*a[10]*a[20]-5*w(x, t)^3*(diff(w(x, t), x))*(diff(diff(diff(diff(w(x, t), x), x), x), x))*delta*a[20]+30*w(x, t)^2*(diff(diff(w(x, t), x), x))^2*(diff(w(x, t), x))*delta*a[20]+12*w(x, t)^2*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2*delta*a[10]-5*w(x, t)^2*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2*a[10]*a[20]+20*w(x, t)^2*(diff(w(x, t), x))^2*(diff(diff(diff(w(x, t), x), x), x))*delta*a[20]-60*w(x, t)*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^3*delta*a[20]-w(x, t)^2*(diff(w(x, t), x))^3*a[10]^2+24*(diff(w(x, t), x))^5*delta*a[20]+(diff(diff(diff(w(x, t), t), x), x))*w(x, t)^4*a[20]+a[10]*(diff(diff(w(x, t), t), x))*w(x, t)^4-2*(diff(w(x, t), x))^5*a[20]^2)/w(x, t)^5 = 0

(6)

K2 := expand(%)

(diff(diff(w(x, t), x), x))*a[0]*a[10]/w(x, t)+(diff(diff(diff(w(x, t), x), x), x))*a[0]*a[20]/w(x, t)+(diff(diff(diff(diff(diff(w(x, t), x), x), x), x), x))*delta*a[20]/w(x, t)+(diff(diff(diff(diff(w(x, t), x), x), x), x))*delta*a[10]/w(x, t)-3*(diff(diff(w(x, t), x), x))^2*delta*a[10]/w(x, t)^2+(diff(diff(w(x, t), x), x))^2*a[10]*a[20]/w(x, t)^2+(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))*a[10]^2/w(x, t)^2+(diff(diff(w(x, t), x), x))*(diff(diff(diff(w(x, t), x), x), x))*a[20]^2/w(x, t)^2-(diff(w(x, t), x))^2*a[0]*a[10]/w(x, t)^2-3*(diff(diff(w(x, t), x), x))^2*(diff(w(x, t), x))*a[20]^2/w(x, t)^3+2*(diff(w(x, t), x))^3*a[0]*a[20]/w(x, t)^3-(diff(w(x, t), x))^2*(diff(diff(diff(w(x, t), x), x), x))*a[20]^2/w(x, t)^3+5*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^3*a[20]^2/w(x, t)^4-6*(diff(w(x, t), x))^4*delta*a[10]/w(x, t)^4+3*(diff(w(x, t), x))^4*a[10]*a[20]/w(x, t)^4-(diff(diff(w(x, t), x), x))*(diff(w(x, t), t))*a[20]/w(x, t)^2-a[10]*(diff(w(x, t), x))*(diff(w(x, t), t))/w(x, t)^2-2*(diff(w(x, t), x))*(diff(diff(w(x, t), t), x))*a[20]/w(x, t)^2+2*(diff(w(x, t), t))*(diff(w(x, t), x))^2*a[20]/w(x, t)^3+24*(diff(w(x, t), x))^5*delta*a[20]/w(x, t)^5+20*(diff(w(x, t), x))^2*(diff(diff(diff(w(x, t), x), x), x))*delta*a[20]/w(x, t)^3-60*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^3*delta*a[20]/w(x, t)^4-3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))*a[0]*a[20]/w(x, t)^2-10*(diff(diff(w(x, t), x), x))*(diff(diff(diff(w(x, t), x), x), x))*delta*a[20]/w(x, t)^2-4*(diff(w(x, t), x))*(diff(diff(diff(w(x, t), x), x), x))*delta*a[10]/w(x, t)^2+(diff(w(x, t), x))*(diff(diff(diff(w(x, t), x), x), x))*a[10]*a[20]/w(x, t)^2-5*(diff(w(x, t), x))*(diff(diff(diff(diff(w(x, t), x), x), x), x))*delta*a[20]/w(x, t)^2+30*(diff(diff(w(x, t), x), x))^2*(diff(w(x, t), x))*delta*a[20]/w(x, t)^3+12*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2*delta*a[10]/w(x, t)^3-5*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2*a[10]*a[20]/w(x, t)^3-(diff(w(x, t), x))^3*a[10]^2/w(x, t)^3+(diff(diff(diff(w(x, t), t), x), x))*a[20]/w(x, t)+a[10]*(diff(diff(w(x, t), t), x))/w(x, t)-2*(diff(w(x, t), x))^5*a[20]^2/w(x, t)^5 = 0

(7)

NULL

Download series-finding.mw

I need to find parameter a[12] any one have any vision for finding parameter  , in p2a must contain 3 exponential but we recieve 19 of them which is something i think it is trail function but trail is give me result so must be a way for finding parameter 

a[12]-pde.mw

the function is true but i want to be sure when i use pdetest must give me zero, but there must be a way for checking such function, please if your pc not strong don't click the command pdetest, i want use explore for such function but i am not sure it work or not, becuase the graph are a little bit strange  and long , i want  a way for easy plotting and visualization of such graph , can anyone help for solve this issue?

 sol.mw

i did pdetest without conjugate like the paper did i get zero but when i did pde test  with conjugate i didn't where is my problem 
i will do without conjugate but how change p[2]=conjugate(p[1])

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := -4*(diff(u(x, y, z, t), x, t))+diff(u(x, y, z, t), `$`(x, 3), z)+3*alpha*(diff(u(x, y, z, t), `$`(y, 2)))+4*(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, z))+2*(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), z))

-4*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), z)+3*alpha*(diff(diff(u(x, y, z, t), y), y))+4*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), z))+2*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), z))

(4)

pde_nonlinear, pde_linear := selectremove(proc (term) options operator, arrow; has((eval(term, u(x, y, z, t) = a*u(x, y, z, t)))/a, a) end proc, pde)

4*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), z))+2*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), z)), -4*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), z)+3*alpha*(diff(diff(u(x, y, z, t), y), y))

(5)

thetai := t*w[i]+y*p[i]+x+z

t*w[i]+y*p[i]+x+z

(6)

eqw := w[i] = 3*alpha*p[i]^2*(1/4)

w[i] = (3/4)*alpha*p[i]^2

(7)

Bij := proc (i, j) options operator, arrow; 4/((p[i]-p[j])^2*alpha) end proc

proc (i, j) options operator, arrow; 4/((p[i]-p[j])^2*alpha) end proc

(8)

theta1 := normal(eval(eval(thetai, eqw), i = 1)); theta2 := normal(eval(eval(thetai, eqw), i = 2))

(3/4)*alpha*t*p[1]^2+y*p[1]+x+z

 

(3/4)*alpha*t*p[2]^2+y*p[2]+x+z

(9)

eqf := f(x, y, z, t) = theta1*theta2+4/((p[1]-p[2])^2*alpha)

f(x, y, z, t) = ((3/4)*alpha*t*p[1]^2+y*p[1]+x+z)*((3/4)*alpha*t*p[2]^2+y*p[2]+x+z)+4/((p[1]-p[2])^2*alpha)

(10)

eq17 := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(11)

eqt := eval(eq17, eqf)

u(x, y, z, t) = 2*((3/4)*alpha*t*p[2]^2+y*p[2]+2*x+2*z+(3/4)*alpha*t*p[1]^2+y*p[1])/(((3/4)*alpha*t*p[1]^2+y*p[1]+x+z)*((3/4)*alpha*t*p[2]^2+y*p[2]+x+z)+4/((p[1]-p[2])^2*alpha))

(12)

NULL

pdetest(eqt, pde)

0

(13)

NULL

Download p1.mw

i don't know how apply conversation language to matlab in righ hand side  don't show up to do conversation language for short is come up but for this not 

restart

K := (2*(k[1]*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1])+((p[1]-p[2])^2*alpha-(k[1]-k[2])^2)*(k[1]+k[2])*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2])/((p[1]-p[2])^2*alpha-(k[1]+k[2])^2)+k[2]*exp((3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2])+((p[2]-p[3])^2*alpha-(k[2]-k[3])^2)*(k[2]+k[3])*exp((3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/((p[2]-p[3])^2*alpha-(k[2]+k[3])^2)+((p[1]-p[2])^2*alpha-(k[1]-k[2])^2)*((p[1]-p[3])^2*alpha-(k[1]-k[3])^2)*((p[2]-p[3])^2*alpha-(k[2]-k[3])^2)*(k[1]+k[2]+k[3])*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/(((p[1]-p[2])^2*alpha-(k[1]+k[2])^2)*((p[1]-p[3])^2*alpha-(k[1]+k[3])^2)*((p[2]-p[3])^2*alpha-(k[2]+k[3])^2))+((p[1]-p[3])^2*alpha-(k[1]-k[3])^2)*(k[1]+k[3])*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/((p[1]-p[3])^2*alpha-(k[1]+k[3])^2)+k[3]*exp((3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])))/(1+exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1])+((p[1]-p[2])^2*alpha-(k[1]-k[2])^2)*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2])/((p[1]-p[2])^2*alpha-(k[1]+k[2])^2)+exp((3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2])+((p[2]-p[3])^2*alpha-(k[2]-k[3])^2)*exp((3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/((p[2]-p[3])^2*alpha-(k[2]+k[3])^2)+((p[1]-p[2])^2*alpha-(k[1]-k[2])^2)*((p[1]-p[3])^2*alpha-(k[1]-k[3])^2)*((p[2]-p[3])^2*alpha-(k[2]-k[3])^2)*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/(((p[1]-p[2])^2*alpha-(k[1]+k[2])^2)*((p[1]-p[3])^2*alpha-(k[1]+k[3])^2)*((p[2]-p[3])^2*alpha-(k[2]+k[3])^2))+((p[1]-p[3])^2*alpha-(k[1]-k[3])^2)*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/((p[1]-p[3])^2*alpha-(k[1]+k[3])^2)+exp((3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3]))

2*(k[1]*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1])+((p[1]-p[2])^2*alpha-(k[1]-k[2])^2)*(k[1]+k[2])*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2])/((p[1]-p[2])^2*alpha-(k[1]+k[2])^2)+k[2]*exp((3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2])+((p[2]-p[3])^2*alpha-(k[2]-k[3])^2)*(k[2]+k[3])*exp((3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/((p[2]-p[3])^2*alpha-(k[2]+k[3])^2)+((p[1]-p[2])^2*alpha-(k[1]-k[2])^2)*((p[1]-p[3])^2*alpha-(k[1]-k[3])^2)*((p[2]-p[3])^2*alpha-(k[2]-k[3])^2)*(k[1]+k[2]+k[3])*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/(((p[1]-p[2])^2*alpha-(k[1]+k[2])^2)*((p[1]-p[3])^2*alpha-(k[1]+k[3])^2)*((p[2]-p[3])^2*alpha-(k[2]+k[3])^2))+((p[1]-p[3])^2*alpha-(k[1]-k[3])^2)*(k[1]+k[3])*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/((p[1]-p[3])^2*alpha-(k[1]+k[3])^2)+k[3]*exp((3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3]))/(1+exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1])+((p[1]-p[2])^2*alpha-(k[1]-k[2])^2)*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2])/((p[1]-p[2])^2*alpha-(k[1]+k[2])^2)+exp((3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2])+((p[2]-p[3])^2*alpha-(k[2]-k[3])^2)*exp((3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/((p[2]-p[3])^2*alpha-(k[2]+k[3])^2)+((p[1]-p[2])^2*alpha-(k[1]-k[2])^2)*((p[1]-p[3])^2*alpha-(k[1]-k[3])^2)*((p[2]-p[3])^2*alpha-(k[2]-k[3])^2)*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[2]*t*alpha*p[2]^2+(1/4)*t*k[2]^3+k[2]*p[2]*y+k[2]*x+k[2]*z+eta[2]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/(((p[1]-p[2])^2*alpha-(k[1]+k[2])^2)*((p[1]-p[3])^2*alpha-(k[1]+k[3])^2)*((p[2]-p[3])^2*alpha-(k[2]+k[3])^2))+((p[1]-p[3])^2*alpha-(k[1]-k[3])^2)*exp((3/4)*k[1]*t*alpha*p[1]^2+(1/4)*t*k[1]^3+k[1]*p[1]*y+k[1]*x+k[1]*z+eta[1]+(3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3])/((p[1]-p[3])^2*alpha-(k[1]+k[3])^2)+exp((3/4)*k[3]*t*alpha*p[3]^2+(1/4)*t*k[3]^3+k[3]*p[3]*y+k[3]*x+k[3]*z+eta[3]))

(1)
 

NULL

Download convert-to-matlab.mw

I am making changes in my code in order to make it work with Grid. This involves making many modules I had export on them as local.

I have lots of code of this form

use toX=A:-some_very_long_module_name:-toX in
local B := module() 
       export foo:=proc()
            toX(...);
       end proc;
end module;
end use;

This is done so I do not have to type A:-some_very_long_module_name:-toX() all the time as toX() is a very common call I make all over the place in many different modules.

This was working fine, except when I now changed some_very_long_module_name module to be local.

I really do not want to change all my code and change toX(...) to the explicit fully qualified name  some_very_long_module_name:-toX(....)

I could probably look into using alias instead, but I do not like aliases.

But before doing this, any one knows why this now makes Maple not happy? And if it possible to make use....end use while keep this long named module local?

Below is work sheet showing 4 examples. The first one is how I had things before, where the module was export.

The second and third examples showing the problems that show up when changing the module to local.

The last one showing it works if I remove use...end use and just type the full long name.

my goal is to keep this long named module local, but still use  use...end use. around other modules which needs to make calls to it. Just to safe typing, that is all. 

Any ideas to try are welcome. 

 

restart;

 

Original code work, but module has to be export

 

A := module()

  export main_entry:=proc()
     B:-foo();
  end proc;

  export some_very_long_name:= module() #NOTICE, export
        export toX:=proc(n::integer)::integer;
              n+1;
        end proc;
  end module;

  use toX=A:-some_very_long_name:-toX in  #works now
  local B:= module()
     export foo:=proc()
         toX(1);
     end proc;
  end module;
  end use;

end module;

_m1906974412096

A:-main_entry()

2

 

Example 1 where it now fails, since changed to local

 

A := module()

  export main_entry:=proc()
     B:-foo();
  end proc;

  local some_very_long_name:= module() #NOTICE, now local
        export toX:=proc(n::integer)::integer;
              n+1;
        end proc;
  end module;

  use toX=A:-some_very_long_name:-toX in
  local B:= module()
     export foo:=proc()
         toX(1);
     end proc;
  end module;
  end use;

end module;

_m1907025773216

A:-main_entry()

Error, (in foo) module does not export `some_very_long_name`

 

Example 2 remove A:- in the use call

 

A := module()

  export main_entry:=proc()
     B:-foo();
  end proc;

  local some_very_long_name:= module() #NOTICE, now local
        export toX:=proc(n::integer)::integer;
              n+1;
        end proc;
  end module;

  use toX= some_very_long_name:-toX in #notice, removed A:-
  local B:= module()
     export foo:=proc()
         toX(1);
     end proc;
  end module;
  end use;

end module;

Error, (in anonymous procedure created in anonymous module instantiated by anonymous module) nameless local variable in procedure

 

 

 

 

Example 3. One solution is to type the full name and remove use....end use; But I am trying to avoid this.

 

A := module()

  export main_entry:=proc()
     B:-foo();
  end proc;

  local some_very_long_name:= module() #NOTICE, now local
        export toX:=proc(n::integer)::integer;
              n+1;
        end proc;
  end module;
  
  local B:= module()
     export foo:=proc()
         some_very_long_name:-toX(1); #this works
     end proc;
  end module;


end module;

_m1907023851968

A:-main_entry()

2

 


 

Download trouble_with_use.mw

Hello,

I have updated to maple 2024 on both my desktop and my laptop, and now I am missing the feature "Convert Output Units:" in the context tab on my windows 11 laptop. It's still available on my windows 10 desktop.

I have tried reinstalling maple and installing java, but it unfortunately did not help. Due to limited school licences, I am unable to test with maple 2023.

Is this an issue you have heard of?

Thank you in advance,

Daniel

 

And here is the context menu on windows 11. Also nothing happens when I click "Format -> Convert Output Units" in the top menu. 

 

Hello, i have been drawing some cool 3d plots for my assignment, but when i use the export button and export it as pdf the plots turn out very low quality. 

See the image below is using the export function

Then i tried something different i tried using the print button and printing to a pdf.

That resulted in a different looking plot

This plot using the print to pdf feature looks much nicer, but the 3d text plot has become impossible to read.

 

Is there a way to fix that? Or to make the export to pdf feature export at higher quality? 

Best Regards

page 37 of book Symmetry Methods for Differential Equations by Hydon gives this example

When I wanted to verify it using Maple., symgen did not find these symmetries. Only when I give it using HINT the exact form it find them.  


 

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1843 and is the same as the version installed in this computer, created 2025, January 25, 22:5 hours Pacific Time.`

libname;

"C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib", "C:\Program Files\Maple 2024\lib"

restart;

ode:=diff(y(x),x) = (y(x)^3+y(x)-3*x^2*y(x))/(3*x*y(x)^2+x-x^3)

diff(y(x), x) = (y(x)^3+y(x)-3*x^2*y(x))/(3*x*y(x)^2+x-x^3)

the_syms:=DEtools:-symgen(ode)

the_syms:=DEtools:-symgen(ode,'way'='all')

the_syms:=DEtools:-symgen(ode,'way'='formal')

#only when I give it the exact general form, it finds them !
the_syms:=DEtools:-symgen(ode,'HINT'=[a*y^3+b*y-c*x^2*y,d*x^3-e*x-f*x*y^2])

[_xi = -3*x^2*y+y^3+y, _eta = x*(x^2-3*y^2-1)]

 


 

Download why_no_syms_feb_10_2025.mw

Is this expected? Should it not have found them on its own?

Is it possible Maple internally does not automatically try Ansatz  of polynomials higher than quadratic to keep computation time low?   If so, I wonder if there is a way to tell it to try cubic or higher orders (like tryhard) option but for symgen?  I will search help more to see if there is a way to do this...

In trying to evaluate the accuracy of an asymptotic approximation, I asked evalf to return the numerical value of the difference of two expressions.  It evaluated each expression but would not take their difference (see line 6).  Any idea what's going on?

restart

g := exp(-r*cosh(x))*x^(2*n); G := Int(g, x = 0 .. infinity)

Int(exp(-r*cosh(x))*x^(2*n), x = 0 .. infinity)

(1)

f0 := arccosh(1+y); df0 := diff(f0, y)

1/(y^(1/2)*(2+y)^(1/2))

(2)

f := f0^(2*n)*df0

arccosh(1+y)^(2*n)/(y^(1/2)*(2+y)^(1/2))

(3)

n := 2; series(f, y)

2*2^(1/2)*y^(3/2)-(7/6)*2^(1/2)*y^(5/2)+(47/80)*2^(1/2)*y^(7/2)-(17281/60480)*2^(1/2)*y^(9/2)+O(y^(11/2))

(4)

r := 6; evalf(G)

0.8560816424e-4

(5)

Ghat := exp(-r)*(2*sqrt(2)*GAMMA(5/2)*`-`*(7*sqrt(2)*(1/6))/r^(5/2)*(GAMMA(7/2)/r^(7/2))); Ghat1 := evalf(Ghat)

0.1056905544e-3-0.2568867641e-4*``

(6)

evalf(Ghat1)

0.1056905544e-3-0.2568867641e-4*``

(7)

 

Download asyapprox.mw

How do i plot / graph a limt? The plot must have a hole at 2 because it is undefined.

limit((x^2-1)/(x-1), x = 1) = 2NULL

``

Download graph-a-limit.mw

the second ode is giving me zero also when we back to orginal under the condition by using them must the orginal ode be zero but i don't know where is mistake , when Orginal paper use some thing different but i think they must have same results i don't know i use them wrong i am not sure at here just , when U(xi)=y(z) in my mw

restart

with(PDEtools)

NULL

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

NULL

G := V(xi) = RootOf(3*_Z^2-3*_Z-1)*B[1]+B[1]*(exp(xi)+exp(-xi))/(exp(xi)-exp(-xi))

V(xi) = RootOf(3*_Z^2-3*_Z-1)*B[1]+B[1]*(exp(xi)+exp(-xi))/(exp(xi)-exp(-xi))

(2)

NULL

p := 2*k

2*k

(3)

ode := I*(-(diff(U(xi), xi))*p*exp(I*(k*x-t*w))-I*U(xi)*w*exp(I*(k*x-t*w)))+(diff(diff(U(xi), xi), xi))*exp(I*(k*x-t*w))+(2*I)*(diff(U(xi), xi))*k*exp(I*(k*x-t*w))-U(xi)*k^2*exp(I*(k*x-t*w))+eta*U(xi)*exp(I*(k*x-t*w))+beta*U(xi)^n*U(xi)*exp(I*(k*x-t*w))+gamma*U(xi)^(2*n)*U(xi)*exp(I*(k*x-t*w))+delta*U(xi)^(3*n)*U(xi)*exp(I*(k*x-t*w))+lambda*U(xi)^(4*n)*U(xi)*exp(I*(k*x-t*w)) = 0

I*(-2*(diff(U(xi), xi))*k*exp(I*(k*x-t*w))-I*U(xi)*w*exp(I*(k*x-t*w)))+(diff(diff(U(xi), xi), xi))*exp(I*(k*x-t*w))+(2*I)*(diff(U(xi), xi))*k*exp(I*(k*x-t*w))-U(xi)*k^2*exp(I*(k*x-t*w))+eta*U(xi)*exp(I*(k*x-t*w))+beta*U(xi)^n*U(xi)*exp(I*(k*x-t*w))+gamma*U(xi)^(2*n)*U(xi)*exp(I*(k*x-t*w))+delta*U(xi)^(3*n)*U(xi)*exp(I*(k*x-t*w))+lambda*U(xi)^(4*n)*U(xi)*exp(I*(k*x-t*w)) = 0

(4)

case1 := [beta = 2*RootOf(3*_Z^2-3*_Z-1)*(n+2)/(B[1]*n^2), delta = 2*B[1]*(RootOf(3*_Z^2-3*_Z-1)+1)*(3*n+2)/(3*n^2), eta = (k^2*n^2*B[1]^2-n^2*w*B[1]^2-1)/(n^2*B[1]^2), gamma = -6*RootOf(3*_Z^2-3*_Z-1)*(n+1)/n^2, lambda = B[1]^2*(3*RootOf(3*_Z^2-3*_Z-1)-7)*(2*n+1)/(9*n^2), A[0] = RootOf(3*_Z^2-3*_Z-1)*B[1], A[1] = 0, B[1] = B[1]]

[beta = 2*RootOf(3*_Z^2-3*_Z-1)*(n+2)/(B[1]*n^2), delta = (2/3)*B[1]*(RootOf(3*_Z^2-3*_Z-1)+1)*(3*n+2)/n^2, eta = (k^2*n^2*B[1]^2-n^2*w*B[1]^2-1)/(n^2*B[1]^2), gamma = -6*RootOf(3*_Z^2-3*_Z-1)*(n+1)/n^2, lambda = (1/9)*B[1]^2*(3*RootOf(3*_Z^2-3*_Z-1)-7)*(2*n+1)/n^2, A[0] = RootOf(3*_Z^2-3*_Z-1)*B[1], A[1] = 0, B[1] = B[1]]

(5)

n := 1

1

(6)

G := U(xi) = (B[1]*(RootOf(3*_Z^2-3*_Z-1)+coth(xi)))^(-1/n)

U(xi) = 1/(B[1]*(RootOf(3*_Z^2-3*_Z-1)+coth(xi)))

(7)

pde3 := eval(ode, case1)

I*(-2*(diff(U(xi), xi))*k*exp(I*(k*x-t*w))-I*U(xi)*w*exp(I*(k*x-t*w)))+(diff(diff(U(xi), xi), xi))*exp(I*(k*x-t*w))+(2*I)*(diff(U(xi), xi))*k*exp(I*(k*x-t*w))-U(xi)*k^2*exp(I*(k*x-t*w))+(k^2*B[1]^2-w*B[1]^2-1)*U(xi)*exp(I*(k*x-t*w))/B[1]^2+6*RootOf(3*_Z^2-3*_Z-1)*U(xi)^2*exp(I*(k*x-t*w))/B[1]-12*RootOf(3*_Z^2-3*_Z-1)*U(xi)^3*exp(I*(k*x-t*w))+(10/3)*B[1]*(RootOf(3*_Z^2-3*_Z-1)+1)*U(xi)^4*exp(I*(k*x-t*w))+(1/3)*B[1]^2*(3*RootOf(3*_Z^2-3*_Z-1)-7)*U(xi)^5*exp(I*(k*x-t*w)) = 0

(8)

odetest(eval(G, case1), pde3)

79584*exp(I*k*x-I*t*w+12*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-127440*exp(I*k*x-I*t*w+10*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+8352*exp(I*k*x-I*t*w+6*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-27792*exp(I*k*x-I*t*w+8*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-24*exp(2*xi-I*t*w+I*k*x)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+4752*exp(I*k*x-I*t*w+4*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+288*exp(2*xi-I*t*w+I*k*x)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-479376*exp(I*k*x-I*t*w+12*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+138240*exp(I*k*x-I*t*w+10*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+70560*exp(18*xi+I*k*x-I*t*w)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-492912*exp(I*k*x-I*t*w+16*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+777888*exp(I*k*x-I*t*w+14*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+16608*exp(I*k*x-I*t*w+8*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-1056*exp(I*k*x-I*t*w+6*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+288*exp(I*k*x-I*t*w+4*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-39000*exp(18*xi+I*k*x-I*t*w)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-50400*exp(I*k*x-I*t*w+16*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+121440*exp(I*k*x-I*t*w+14*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+27000*RootOf(3*_Z^2-3*_Z-1)*exp(18*xi+I*k*x-I*t*w)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-55080*RootOf(3*_Z^2-3*_Z-1)*exp(18*xi+I*k*x-I*t*w)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+7200*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+16*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+394416*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+16*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-205920*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+14*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-609984*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+14*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-244512*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+12*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+366768*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+12*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-42480*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+10*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-144720*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+10*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-48672*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+8*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+8208*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+8*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+9504*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+6*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+20736*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+6*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+288*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+4*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+18576*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+4*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-72*RootOf(3*_Z^2-3*_Z-1)*exp(2*xi-I*t*w+I*k*x)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+1080*RootOf(3*_Z^2-3*_Z-1)*exp(2*xi-I*t*w+I*k*x)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))

(9)

simplify(-492912*exp(I*k*x-I*t*w+16*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+777888*exp(I*k*x-I*t*w+14*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+16608*exp(I*k*x-I*t*w+8*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-1056*exp(I*k*x-I*t*w+6*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+288*exp(I*k*x-I*t*w+4*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-39000*exp(18*xi+I*k*x-I*t*w)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-50400*exp(I*k*x-I*t*w+16*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+121440*exp(I*k*x-I*t*w+14*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+79584*exp(I*k*x-I*t*w+12*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-127440*exp(I*k*x-I*t*w+10*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+8352*exp(I*k*x-I*t*w+6*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-27792*exp(I*k*x-I*t*w+8*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-24*exp(2*xi-I*t*w+I*k*x)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+4752*exp(I*k*x-I*t*w+4*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+288*exp(2*xi-I*t*w+I*k*x)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-479376*exp(I*k*x-I*t*w+12*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+138240*exp(I*k*x-I*t*w+10*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+70560*exp(18*xi+I*k*x-I*t*w)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-55080*RootOf(3*_Z^2-3*_Z-1)*exp(18*xi+I*k*x-I*t*w)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+7200*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+16*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+394416*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+16*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-205920*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+14*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-609984*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+14*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-244512*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+12*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+366768*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+12*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-42480*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+10*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-144720*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+10*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-48672*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+8*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+8208*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+8*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+9504*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+6*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+20736*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+6*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+288*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+4*xi)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+18576*RootOf(3*_Z^2-3*_Z-1)*exp(I*k*x-I*t*w+4*xi)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))-72*RootOf(3*_Z^2-3*_Z-1)*exp(2*xi-I*t*w+I*k*x)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+1080*RootOf(3*_Z^2-3*_Z-1)*exp(2*xi-I*t*w+I*k*x)/(B[1]^3*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1))+27000*RootOf(3*_Z^2-3*_Z-1)*exp(18*xi+I*k*x-I*t*w)/(B[1]*(3125*exp(20*xi)+25000*exp(18*xi)+76875*exp(16*xi)+108000*exp(14*xi)+55650*exp(12*xi)-12432*exp(10*xi)-11130*exp(8*xi)+4320*exp(6*xi)-615*exp(4*xi)+40*exp(2*xi)-1)))

(((244512*B[1]^2-366768)*exp(10*xi)+(205920*B[1]^2+609984)*exp(12*xi)+(-7200*B[1]^2-394416)*exp(14*xi)+42480*exp(8*xi)*B[1]^2-27000*exp(16*xi)*B[1]^2-288*exp(2*xi)*B[1]^2-9504*exp(4*xi)*B[1]^2+48672*exp(6*xi)*B[1]^2+72*B[1]^2+144720*exp(8*xi)+55080*exp(16*xi)-18576*exp(2*xi)-20736*exp(4*xi)-8208*exp(6*xi)-1080)*RootOf(3*_Z^2-3*_Z-1)+(-79584*B[1]^2+479376)*exp(10*xi)+(-121440*B[1]^2-777888)*exp(12*xi)+(50400*B[1]^2+492912)*exp(14*xi)+127440*exp(8*xi)*B[1]^2+39000*exp(16*xi)*B[1]^2-288*exp(2*xi)*B[1]^2+1056*exp(4*xi)*B[1]^2-16608*exp(6*xi)*B[1]^2+24*B[1]^2-138240*exp(8*xi)-70560*exp(16*xi)-4752*exp(2*xi)-8352*exp(4*xi)+27792*exp(6*xi)-288)*exp(2*xi-I*t*w+I*k*x)/(B[1]^3*(-3125*exp(20*xi)-25000*exp(18*xi)-76875*exp(16*xi)-108000*exp(14*xi)-55650*exp(12*xi)+12432*exp(10*xi)+11130*exp(8*xi)-4320*exp(6*xi)+615*exp(4*xi)-40*exp(2*xi)+1))

(10)

Download ode.mw

this is my first time something like that   coming up my equation after taking integral exponential coming up why?

g1.mw

the series is so complicated but have a strange pattern if you watch the index of parameter  they are not repeated 

 

 

Do you think the result of String(0.016)  should be "0.016"  instead of ".16e-1" ?

Any reason why it gives the second form and not the first?  Now have to keep using sprintf to force formating as decimal point. Is this documented somewhere? quick search did not find anything do far.

Maple 2024.2 on windows.

s:="0.016";

"0.016"

z:= :-parse(s);

0.16e-1

String(z);

".16e-1"

sprintf("%0.3f",z);

"0.016"

 

 

Download string_of_decimal_number.mw

First 9 10 11 12 13 14 15 Last Page 11 of 43