Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

I have currently a Maple session running with only one open worksheet.

The worksheet only contains an input line with the name "a" and an output line with the name "a".

The fan of my laptop is running full throttle and the task manager displays 10% CPU usage and a very high power usage (3 mserver.exe running, the process with the cpu load is javaw.exe. Suspending this process shuts down the fan).

After about an hour I decided to ask. While typing this post (in Firefox, probably unrelated) the CPU usage went down and the fan went quite. The total system CPU usage is now down to 2%.

Has anybody seen the same? What could have cause it? It's not the first time I observe this. Anything that I could check before restarting Maple? All on Windows 10 after system restart.

Update:

The thread that consumes cpu is called ucrtbase.dll!configthreadlocate

Starting Maplesim in parallel almost immediately turns off the fan while the displayed cpu load is still high but now variing.

I was not expecting to see step-by-step for this ode, but why does it give internal error instead of saying not supported? 

Am I doing something wrong in the call? Unfortunately, this Maple internal error can't be trapped at user level. Which means the whole program terminates also.

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1820 and is the same as the version installed in this computer, created 2024, September 28, 18:14 hours Pacific Time.`

libname;

"C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib", "C:\Program Files\Maple 2024\lib"

ode:=3*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0;

3*(diff(diff(y(x), x), x))+x*(diff(y(x), x))-4*y(x) = 0

Student:-ODEs:-ODESteps(ode,y(x))

Error, (in anonymous procedure called from Student:-ODEs:-ODESteps) too many levels of recursion

try
   Student:-ODEs:-ODESteps(ode,y(x));
catch:
  print("cought the error ");
end try;

Error, (in anonymous procedure called from Student:-ODEs:-ODESteps) too many levels of recursion

 


 

Download too_many_Levels_odesteps_oct_14_2024.mw

 

I have a procedure that I am trying to run that would be an improvement/more sophisticated way of solving a problem that I have previously solved. When I try and run my procedure I am getting an error, and from what I gather with the error is that there are some values when inserted into my procedure that cannot be evaluated. Just for context it is a procedure that contains numerical solutions to a system of DEs and and contains inequalities. 

I would like to know is there an easy method to figure out what values are giving me this error? 

Or a follow up, is there something wrong with my procedure that is giving me this error? I have included some commentary in my workshet as well to hopefully make everything clear. 

Thanks. 

Proc_Error.mw

I never really understood Intat. Help says 

"The intat command expresses an integral evaluated at a point; it is analogous to using the D command to express a derivative evaluated at a point."

But slope at a point is clear what it is and one can visualize it.

I do not understand what integral at single point means.

If one thinks of integration as area under the curve of the function, so what does area at single point mean? Should not integration (definite) always have lower and upper limits?

But my main question is not the above. I am sure there is a valid reason for Intat, otherwise it will not be in Maple.

But my quesiton is, in the context of solution to ode, can one replace result given using Intat by Int such that the lower limit starts from zero, and using same upper limit?

ie change Intat(...., a_ = something)  by Int( ... , a_ = 0 ... something) without changing the semantics or the correctness of the solution?

Because in  Intat, the lower limit is empty, and this always bothered me. At school the teacher says definite integration should have both lower and upper limits.

I tried it few places, and odetest verifies the solution of ode when using Intat or when using Int with lower limit zero:

ode:=diff(y(x), x) = B + C*f(a*x + b*y(x));

diff(y(x), x) = B+C*f(a*x+b*y(x))

sol_1:=Intat(1/(C*f(_a*b)*b+b*B+a),_a = (a*x+b*y(x))/b)*b-x+_C1 = 0;
sol_2:=Int(1/(C*f(_a*b)*b+b*B+a),_a = 0..(a*x+b*y(x))/b)*b-x+_C1 = 0;

Intat(1/(C*f(_a*b)*b+b*B+a), _a = (a*x+b*y(x))/b)*b-x+_C1 = 0

(Int(1/(C*f(_a*b)*b+b*B+a), _a = 0 .. (a*x+b*y(x))/b))*b-x+_C1 = 0

odetest(sol_1,ode);

0

odetest(sol_2,ode);

0

 

 

Download intat_vs_int.mw

Is there a case you know, where solution of ode which has Intat, when replaced by Int with lower limit 0, will no longer verifies the ode?  I am not able to find one so far. But may be there is.
 

Update

fyi, I found case where it makes difference. Not for odetest, but when using value. When using Int(...,tau=0..upper) vs   Intat(....,tau=upper)

value was able to find the value when using Intat, but not when using Int (for this example). 

So I think I will just stick to Intat even though both verified the ode as valid solution as it is better to be able to find value for integral if possible. I knew there must be good reason why Intat was invented.

 

ode:=diff(y(x),x)= sin(x-y(x));

diff(y(x), x) = sin(x-y(x))

sol_1:=Int(1/(1 - sin(tau)), tau = 0..x - y(x)) = x + _C1;
sol_2:=Intat(1/(1 - sin(tau)), tau = x - y(x)) = x + _C1;

Int(1/(1-sin(tau)), tau = 0 .. x-y(x)) = x+_C1

Intat(1/(1-sin(tau)), tau = x-y(x)) = x+_C1

odetest(sol_1,ode);

0

odetest(sol_2,ode);

0

value(sol_1);

int(1/(1-sin(tau)), tau = 0 .. x-y(x)) = x+c__1

value(sol_2);

-2/(tan((1/2)*x-(1/2)*y(x))-1) = x+c__1

 


 

Download int_vs_intat_v2.mw

 

I have expression which can have many different functions  in it. Assume the expression is `+` type.

I do not know before what these function names are. 

Is there a way to make Maple collect on these functions automatically? Simplify does not do it. So if there is something like b*g(x)+g(x) in the expression, to simplify this to (1+b)*g(x) automatically?

I noticed if expression is   just b*g(x)+g(x) then simplify does give (1+b)*g(x) but once I add a new term, like 3+b*g(x)+g(x) then it no longer does it! which for me is very strange. I was expecting to get 3+(1+b)*g(x) 

Here is an example

restart;

T:=g(x)+b*g(x);
simplify(T);

g(x)+b*g(x)

g(x)*(b+1)

T:=3+g(x)+b*g(x);
simplify(T);

3+g(x)+b*g(x)

3+g(x)+b*g(x)

T:=3+g(x)+b*g(x)+f(x);
simplify(T);

3+g(x)+b*g(x)+f(x)

3+g(x)+b*g(x)+f(x)

 

 

Download simplification_oct_9_2024.mw

What do I need to do to get this output using another software

Ofcourse, I could go and add code to find the names of each function and then use collect. But it seems to me simplify should have done this automatically as the above shows. So I am wondering if there is an option I've overlooked which will do this more easily.

Maple 2024.1

In the rectangular Cartesian coordinate system, three straight lines gA, gB, gC are given, which are not all parallel to each other. Another straight line g and the points Oa, Ob, Oc on it are given. A triangle ABC is to be constructed, one of whose vertices lies on gA, gB or gC and the triangle sides a, b and c (or their extensions) each run through Oa, Ob or Oc.
We are looking for the coordinates of the vertices A, B, C.
In a purely constructive solution, the calculation can be omitted.

Hello,

I noticed that the Linearly Implicit Euler method (also known as the Semi-Implicit Euler method) is not available in Maple's built-in ODE solvers. This method is useful for stiff ODEs, where part of the function is treated implicitly (for the linear term) and part is treated explicitly (for the non-linear term).

I know that the Linearly Implicit Euler method is a specialized method that probably does not find enough widespread use to justify its inclusion as a standard feature in Maple, especially given Maple's focus on numerical methods such as Runge-Kutta methods and fully implicit methods for rigid equations.

I’m wondering:

  1. Why isn’t this method included in Maple’s standard set of numerical solvers?
  2. How can I implement this method in my own code in Maple to solve stiff ODEs?

Any guidance or examples of implementation would be greatly appreciated!

Thank you!

Linearly_Implicit_Method.pdf

Hello,

I need to order a set of polynomials based on a given ranking. For example:

F:=[F1,F2,F3,F4,F5,F6]:
F1 := x1*x4^2+x4^2-x1*x2*x4-x2*x4+x1*x2+3*x2;
F2 := x1*x4-x3-x1*x2;
F3 := x3*x4-2*x2^2-x1*x2-1;
F4 := x1*x3^2+x3^2-x1^2*x2*x3-x1*x2*x3+x1^3*x2+3*x1^2*x2;
F5 := -x3^2 + x1*x2*x3 -2*x1*x2^2-x1^2*x2-x1;
F6 := 2*x1*x2^2+2*x1^2*x2^2-2*x1^2*x2+x1^2+x1;

The order used to rank the polynomials is based on the variables in the following order: x1 < x2 < x3 < x4.

The ranking criteria are:

  1. The first polynomial should be the one involving x4 with the lowest degree of nonlinearity in x4 and the fewest number of terms (in this case, F2).
  2. The next polynomial should also involve x4, but with the lowest degree of nonlinearity and the next fewest number of terms and so on.
  3. Once the polynomials in x4 are exhausted, the ranking continues similarly for the next variable x3, followed by x2, and finally x1.

How can I do this efficiently?

Obs.:If necessary, I can share my solution to the problem, though it's far from efficient.

Hello,

I am attempting to solve what appears to be a simple system of two ordinary differential equations (ODEs) (please find the attached file). However, I encountered an error message from Maple stating: "division by zero."

Could anyone suggest an approach to obtain a closed-form solution for this system?

Please note that the system includes two variables: S(t) and K(t). All other symbols represent positive parameters.

Thank you in advance for your assistance!

Best regards,

Dmitry

Download ODE.mw

A classic task from surveying that is unfortunately no longer taught in our GPS age and is worth remembering:

A hiker has lost his way and wants to know where he is. He has a map, a compass, paper, pen and calculator in his bag. From his position he sees three distant objects from left to right: a radio mast F, a chimney S and a church tower K. He also finds these objects on his map. Using his compass he aims at the three objects and measures the angles at which the distances FS and SK appear: angle for FS=alpha, angle for SK=beta. The hiker also manages to get the approximate coordinates of the three objects from the map to scale: F=(xf;yf), S=(xs;ys) and K=(xk;yk).
Question:
What are the hiker's coordinates?

Hello, I am having problem in solving the pde in the image using maple. Due to its nonlinear nature it has been solved for small value of v using first order perturbation technique and seperation of variable method into radial and angular part in many papers. I am having trouble in proceeding as Maple complains about Boundary/Initial condition.Please tell me if Maple can provide any help in improving existing solution or providing new solution? I can post the full solution procedure by the method i mentioned if needed.

restart

ode0 := (diff(xi^2*(diff(theta[E](xi), xi)), xi))/xi^2 = -theta[E](xi)^n

(2*xi*(diff(theta[E](xi), xi))+xi^2*(diff(diff(theta[E](xi), xi), xi)))/xi^2 = -theta[E](xi)^n

(1)

bc0 := theta[E](0) = 1, (D(theta[E]))(0) = 0

theta[E](0) = 1, (D(theta[E]))(0) = 0

(2)

base := dsolve({bc0, ode0}, theta[E](xi), series)

theta[E](xi) = series(1-(1/6)*xi^2+((1/120)*n)*xi^4+O(xi^6),xi,6)

(3)

pde1 := (diff(xi^2*(diff(psi(xi, mu), xi)), xi))/xi^2+(diff((-mu^2+1)*(diff(psi(xi, mu), mu)), mu))/xi^2 = -psi(xi, mu)^n+v

(2*xi*(diff(psi(xi, mu), xi))+xi^2*(diff(diff(psi(xi, mu), xi), xi)))/xi^2+(-2*mu*(diff(psi(xi, mu), mu))+(-mu^2+1)*(diff(diff(psi(xi, mu), mu), mu)))/xi^2 = -psi(xi, mu)^n+v

(4)

bc1 := psi(0, mu) = 1, (D[1](psi))(0, mu) = 0, (D[2](psi))(0, mu) = 0, limit(psi(xi, mu), v = 0) = rhs(base)

psi(0, mu) = 1, (D[1](psi))(0, mu) = 0, (D[2](psi))(0, mu) = 0, psi(xi, mu) = series(1-(1/6)*xi^2+((1/120)*n)*xi^4+O(xi^6),xi,6)

(5)

pdsolve(pde1, [bc1], psi(xi, mu))

Error, (in pdsolve/sys) too many arguments; some or all of the following are wrong: [[psi(xi,mu)], [psi(0,mu) = 1, D[1](psi)(0,mu) = 0, D[2](psi)(0,mu) = 0, psi(xi,mu) = series(1-1/6*xi^2+1/120*n*xi^4+O(xi^6),xi,6)]]

 

``

Download Nonlinear_Elliptic_PDE_in_Spherical_Coordinate.mw

Just finished an exciting lecture for undergraduate students on Euler methods for solving ordinary differential equations (ODEs)! 📝 We explored the Euler method and the Improved Euler method (a.k.a. Heun's method) and discussed how these fundamental techniques work for approximating solutions to ODEs.

To make things practical and hands-on, I demonstrated how to implement both methods using Maple—a fantastic tool for experimenting with numerical methods. Seeing these concepts come to life with visualizations helps understand the pros and cons of each method.

The Euler method is the simplest numerical approach, where we approximate the solution by stepping along the slope given by the ODE. But there's a catch: using a large step size can lead to large errors that accumulate quickly, causing significant deviation from the real solution.

Plot Results:

  • With a larger step size (h=0.5h = 0.5h=0.5), the solution tends to drift away significantly from the actual curve.
  • Reducing the step size improves accuracy, but it also means more steps and more computation.

Next, we discussed the Improved Euler method, which is like Euler's smarter sibling. Instead of blindly following the initial slope, it:

  1. Estimates the slope at the start.
  2. Uses that slope to predict an intermediate value.
  3. Then, it takes another slope at the intermediate point.
  4. Averages these two slopes for a better approximation.

This technique makes a big difference in accuracy and stability, especially with larger step sizes.

Plot Results:

  • Using the Improved Euler method, we found that even with a larger step size, the solution is smoother and closer to the true path.
  • The average slope helps mitigate the inaccuracies that arise from only using the beginning point's derivative, effectively reducing the local error.
  • The standard Euler method can produce solutions that oscillate or diverge, especially for larger step sizes.
  • The Improved Euler method follows the actual trend of the solution more faithfully, even with fewer steps. This makes it a more efficient choice for balancing computational effort and accuracy.
  • The Euler method is great for its simplicity but often requires very small step sizes to be accurate, leading to more computational effort.
  • The Improved Euler method—which we implemented and visualized on Maple—proved to be more reliable and accurate, especially for larger step sizes.

It was amazing to see the students engage with these foundational methods, and implementing them on Maple brought a deeper understanding of numerical analysis and the challenges of solving differential equations.


 


restart

with(plots)

with(DEtools)

ODE1 := diff(y(x), x) = -2*x*y(x)/(x^2+1)

diff(y(x), x) = -2*x*y(x)/(x^2+1)

(1)

NULL

We calculate the general solution to the ODE

NULL

dsolve(ODE1, y(x))

y(x) = c__1/(x^2+1)

(2)

NULL

Now let's solve the problem for the following two inital conditions

y(0) = 2 and y(0) = 1/2

dsolve({ODE1, y(0) = 2}, y(x))

y(x) = 2/(x^2+1)

(3)

dsolve({ODE1, y(0) = 1/2}, y(x))

y(x) = 1/(2*x^2+2)

(4)

Then, we are going to plot the solutions to the IVP's together with the slope field corresponding to the ODE.

 

NULLdfieldplot(ODE1, [y(x)], x = -5 .. 5, y = -5 .. 5, color = blue, scaling = constrained, axes = boxed)

 

 

DEplot(ODE1, y(x), x = -5 .. 5, y = -5 .. 5, [[y(0) = 2], [y(0) = 4]], linecolor = red, color = blue, scaling = constrained, axes = boxed)

 

Problem 2 (EULER METHOD)

NULL

NULL

ODE2 := diff(y(x), x) = sin(x*y(x))

diff(y(x), x) = sin(x*y(x))

(5)

 

 

dsolve(ODE2, y(x))

NULL

Maple returned no output! That means Maple is unable to solve the equation.

NULL

If you are curious what steps Maple went through to  find a solution before failing
to do so, you can ask to see the steps using the command "infolevel". The levels
of information that you can request range from 0 to 5.

 

````

dsolve(ODE2, y(x))

soln := dsolve({ODE2, y(0) = 3}, y(x), numeric)

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 28, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..65, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 21, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0, (64) = -1, (65) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .16290418802201975, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..1, {(1) = 3.0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = .1}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..1, {(1) = 3.0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = .0, (4, 0) = .0, (4, 1) = .0, (5, 0) = .0, (5, 1) = .0, (6, 0) = .0, (6, 1) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = y(x)]`; YP[1] := sin(X*Y[1]); 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = y(x)]`; YP[1] := sin(X*Y[1]); 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 27 ) = (""), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0), ( 28 ) = (0)  ] ))  ] ); _y0 := Array(0..1, {(1) = 0.}); _vmap := array( 1 .. 1, [( 1 ) = (1)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if elif type(_xin, `=`) and lhs(_xin) = "setdatacallback" then if not type(rhs(_xin), 'nonegint') then error "data callback must be a nonnegative integer (address)" end if; _dtbl[1][28] := rhs(_xin) else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [x, y(x)], (4) = []}); _vars := _dat[3]; _pars := map(lhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(6)

[soln(1), soln(1.5), soln(2), soln(2.5), soln(3), soln(3.5), soln(4), soln(4.5), soln(5)]

[[x = 1., y(x) = HFloat(3.5280317971877286)], [x = 1.5, y(x) = HFloat(3.1226400064202693)], [x = 2., y(x) = HFloat(2.653970420106217)], [x = 2.5, y(x) = HFloat(2.323175669304077)], [x = 3., y(x) = HFloat(2.3019187052877816)], [x = 3.5, y(x) = HFloat(2.6587033583656714)], [x = 4., y(x) = HFloat(2.497876146260152)], [x = 4.5, y(x) = HFloat(2.220305976552359)], [x = 5., y(x) = HFloat(1.9758297601444128)]]

(7)

p1 := odeplot(soln, [x, y(x)], x = 0 .. 5, color = magenta, thickness = 2, scaling = constrained, view = [0 .. 5, 0 .. 5])

 

p2 := dfieldplot(ODE2, [y(x)], x = 0 .. 5, y = 0 .. 5, color = blue, scaling = constrained)

display(p1, p2)

 

DEplot(ODE2, y(x), x = 0 .. 5, y = 0 .. 5, [[y(0) = 3]], linecolor = red, color = blue, scaling = constrained, axes = boxed)

 

Construct approximate solutions for x from 0 to 5 to the initial problem 2 using Euler's method with the three different step sizes Δx=0.5, 0.25, 0.125

f := proc (x, y) options operator, arrow; sin(x*y) end proc

proc (x, y) options operator, arrow; sin(y*x) end proc

(8)

Eulermethod := proc (f, x_start, y_start, dx, n_total) local x, y, Y, i, k; x[1] := x_start; y[1] := y_start; for i to n_total do y[i+1] := y[i]+f(x[i], y[i])*dx; x[i+1] := x[1]+i*dx end do; Y := [seq([x[k], y[k]], k = 1 .. n_total)]; return Y end proc

proc (f, x_start, y_start, dx, n_total) local x, y, Y, i, k; x[1] := x_start; y[1] := y_start; for i to n_total do y[i+1] := y[i]+f(x[i], y[i])*dx; x[i+1] := x[1]+i*dx end do; Y := [seq([x[k], y[k]], k = 1 .. n_total)]; return Y end proc

(9)

NULL

NULL

NULL

NULL

A1 := Eulermethod(f, 0, 3, .5, 10)

[[0, 3], [.5, 3.], [1.0, 3.498747493], [1.5, 3.323942476], [2.0, 2.842530099], [2.5, 2.560983065], [3.0, 2.620477947], [3.5, 3.120464063], [4.0, 2.621830593], [4.5, 2.185032319]]

(10)

A2 := Eulermethod(f, 0, 3, .25, 20)

[[0, 3], [.25, 3.], [.50, 3.170409690], [.75, 3.420383740], [1.00, 3.556616077], [1.25, 3.455813236], [1.50, 3.224836021], [1.75, 2.976782400], [2.00, 2.757025820], [2.25, 2.583147563], [2.50, 2.469680146], [2.75, 2.442487816], [3.00, 2.547535655], [3.25, 2.791971512], [3.50, 2.877900373], [3.75, 2.727027361], [4.00, 2.547414295], [4.25, 2.374301829], [4.50, 2.219839448], [4.75, 2.086091178]]

(11)

A3 := Eulermethod(f, 0, 3, .125, 40)

[[0, 3], [.125, 3.], [.250, 3.045784066], [.375, 3.132030172], [.500, 3.247342837], [.625, 3.372168142], [.750, 3.479586272], [.875, 3.542983060], [1.000, 3.548166882], [1.125, 3.498733738], [1.250, 3.409546073], [1.375, 3.297015011], [1.500, 3.174012084], [1.625, 3.049159854], [1.750, 2.927817142], [1.875, 2.813241461], [2.000, 2.707496816], [2.125, 2.612101612], [2.250, 2.528513147], [2.375, 2.458549923], [2.500, 2.404840953], [2.625, 2.371369082], [2.750, 2.364080535], [2.875, 2.391119623], [3.000, 2.460798019], [3.125, 2.572154041], [3.250, 2.695044010], [3.375, 2.772263417], [3.500, 2.780805371], [3.625, 2.742906337], [3.750, 2.680985435], [3.875, 2.607451728], [4.000, 2.528940353], [4.125, 2.449278434], [4.250, 2.370825619], [4.375, 2.295054886], [4.500, 2.222824117], [4.625, 2.154537647], [4.750, 2.090275081], [4.875, 2.029905439]]

(12)

NULL

p3 := pointplot(A1, color = green, scaling = constrained, symbol = circle)

p4 := pointplot(A2, color = black, scaling = constrained, symbol = asterisk)

p5 := pointplot(A3, color = red, scaling = constrained, symbol = diamond)

NULL

display([p1, p3, p4, p5])

 

NULL

In this plot, the differences between the lines visually represent how using different step sizes affects the overall solution accuracy. The red points are closest to what a more accurate numerical solution would look like, while the green points are more of a rough approximation.

 

 

Problem 3 (IMPROVED EULER METHOD

``

 

 

 

ImprovedEulermethod := proc (f, x_start, y_start, dx, n_total) local x, y, Y, i, k, k1, k2; x[1] := x_start; y[1] := y_start; for i to n_total do k1 := f(x[i], y[i]); k2 := f(x[i]+dx, y[i]+k1*dx); y[i+1] := y[i]+(1/2)*dx*(k1+k2); x[i+1] := x[1]+i*dx end do; Y := [seq([x[k], y[k]], k = 1 .. n_total+1)]; return Y end proc

proc (f, x_start, y_start, dx, n_total) local x, y, Y, i, k, k1, k2; x[1] := x_start; y[1] := y_start; for i to n_total do k1 := f(x[i], y[i]); k2 := f(x[i]+dx, y[i]+k1*dx); y[i+1] := y[i]+(1/2)*dx*(k1+k2); x[i+1] := x[1]+i*dx end do; Y := [seq([x[k], y[k]], k = 1 .. n_total+1)]; return Y end proc

(13)

A := ImprovedEulermethod(f, 0, 3, .5, 10); B := ImprovedEulermethod(f, 0, 3, .25, 20); C := ImprovedEulermethod(f, 0, 3, .125, 40)

[[0, 3], [.125, 3.022892033], [.250, 3.089335383], [.375, 3.190999573], [.500, 3.311460714], [.625, 3.426126738], [.750, 3.508312296], [.875, 3.539992283], [1.000, 3.518184043], [1.125, 3.451931748], [1.250, 3.354946855], [1.375, 3.240089444], [1.500, 3.117181611], [1.625, 2.992925708], [1.750, 2.871597591], [1.875, 2.755823574], [2.000, 2.647215450], [2.125, 2.546845751], [2.250, 2.455612702], [2.375, 2.374560360], [2.500, 2.305227222], [2.625, 2.250113264], [2.750, 2.213376654], [2.875, 2.201814459], [3.000, 2.225589190], [3.125, 2.295322044], [3.250, 2.406184220], [3.375, 2.516909932], [3.500, 2.583378006], [3.625, 2.599915321], [3.750, 2.579967129], [3.875, 2.537160528], [4.000, 2.481052245], [4.125, 2.417781798], [4.250, 2.351265142], [4.375, 2.284028571], [4.500, 2.217702881], [4.625, 2.153313287], [4.750, 2.091461577], [4.875, 2.032452273], [5.000, 1.976386380]]

(14)

NULL

plot2 := pointplot(A, color = green, scaling = constrained, symbol = circle)

plot3 := pointplot(B, color = black, scaling = constrained, symbol = asterisk)

plot4 := pointplot(C, color = red, scaling = constrained, symbol = diamond)

NULL

display([p1, plot2, plot3, plot4])

 

The Improved Euler method, by averaging slopes, provides a significant improvement over the basic Euler method, particularly when the step size is relatively large.


Download Diff_equations.mw

Given a conventionally labeled triangle ABC with the two sides a=3 and b=4, c is not given. What is the side length of the largest inscribed square whose "base" lies on the triangle side c?

The usual ODE must be solved:
y´´*(y^3-y)+y´^2 *(y^2+1)=0
"Dangerous places" of the definition domain must be described: Where are the general solution y(x) and its derivatives continuous?

This is probably asked before but can't find it. 

After making a plot, then RIGHT-CLICKing on it, option menu comes up that allows one to modify the plot (like adding gridlines, or change the line style).

How does one find the Maple command after doing such changes, so one can use the command in the code?

Here is an example. I modified a little acers plot in this answer and added the points to the plot

eq:=-0.0004*x^2 - 2.7680*10^(-28)*x^12 - 2.1685*10^(-43)*x^18 - 1.3245*10^(-37)*x^16 - 1.6917*10^(-32)*x^14 + 0.7650 + 6.6773*10^(-18)*x^8 - 2.5543*10^(-23)*x^10 - 8.0002*10^(-13)*x^6 + 3.6079*10^(-8)*x^4 = 0:
the_roots:=fsolve(eq):	
the_roots:=map(X->[X,0],[the_roots]):
p1:=plot(lhs(eq),x=-210..210,size=[500,200]):
p2:=plot(the_roots,style=point, color=red, symbol=solidcircle, symbolsize=20):
plots:-display(p1,p2)

 

I was lazy to look up the grid option syntax. So right clicked on the plot and found option to add gridline. So said, great. And the above is the result.

But now I'd like to see the command used so I know where the grid option goes and how its syntax is. There does not seem to be option in the interface to display the Maple command used.

How would one find it?

Maple 2024.1 on windows 10

 

First 16 17 18 19 20 21 22 Last Page 18 of 37