Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

This is new:

Maple 2024 frozen on opening recent files

Maple 2023 frozen on opening

Maple 2022 frozen on opening start page

Maple 2021 blinking

Maple 2020 opening start page

The above system state is constant for about 30 min. Maple sessions without start page are working. I can enter code but file opeing and saving does not work. The fact that Maple 2020 is also not working makes it unlikely that the Java environement is part of the problem.

I have several times restarted the system. The rest of the system is working.

Something happened to the system and I have no clue what is was and what I can do about it.

Any ideas or suggestions what I could try? Windows 10.

Why Maple gives this error on solving first order linear ode using ODESteps? 

26004

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1744 and is the same as the version installed in this computer, created 2024, April 17, 19:33 hours Pacific Time.`

ode:=diff(y(x),x)+x*y(x)=1;
ic:=y(0)=0;
dsolve([ode,ic]);

diff(y(x), x)+x*y(x) = 1

y(0) = 0

y(x) = -((1/2)*I)*exp(-(1/2)*x^2)*Pi^(1/2)*2^(1/2)*erf(((1/2)*I)*2^(1/2)*x)

Student:-ODEs:-ODESteps([ode,ic])

Error, (in Student:-ODEs:-OdeSolveOrder1) invalid input: too many and/or wrong type of arguments passed to solve; first unused argument is _C1

 

 

Download odesteps_fail_may_10_2024.mw

ps. also reported to Maplesoft customer support.

I want to rescale a projective vector. Have been using gcd on the numerators and denominators. This works in simple situations. It doesn;t work well here, admitadely the points have been just made up for the question.  Square roots seem to make it mal-preform. I run into a lot of squate roots in symbolic situations. What would be a better way? I have been wondering if frontend would help?

restart

Prntmsg::boolean:=true;
Normalise_Projective_Point:=1;
ReScl::boolean:=true;

true

 

1

 

true

(1)

 

ProjLP:=overload([

      proc(A::Vector[row],B::Vector[row],prnt::boolean:=Prntmsg)
      description "2 projective points to create a projective line vector";
      option overload;
      local Vp ,gcdn,gcdd,vp ;
      uses LinearAlgebra;
       
      Vp:=CrossProduct(A,B)^%T;#print("2nd ",Vp);
      if ReScl then
         gcdn := gcd(gcd(numer(Vp[1]),numer(Vp[2])), numer(Vp[3]));
         gcdd := gcd(gcd(denom(Vp[1]),denom(Vp[2])), denom(Vp[3]));
         Vp:=simplify(Vp*gcdd/gcdn);
      end if;
      if Prntmsg then
         print("Line vector from two projective points. " );
      end if;
      return Vp
      end proc,



      proc(A::Vector[column],B::Vector[column],prnt::boolean:=Prntmsg)
      description "2 lines to get intersection projective point";
      option overload;
      uses LinearAlgebra;
      local  Vp;
    
      Vp:=CrossProduct(A,B)^%T;
     
     
      if Vp[3]<>0 and Normalise_Projective_Point<>0 then
           Vp:=Vp/Vp[3];
      end if;
      if Prntmsg then
           print("Meet of two Lines ");
      end if;
      return Vp
   end proc
     
]);

 

proc () option overload; [proc (A::(Vector[row]), B::(Vector[row]), prnt::boolean := Prntmsg) local Vp, gcdn, gcdd, vp; option overload; description "2 projective points to create a projective line vector"; Vp := LinearAlgebra:-CrossProduct(A, B)^%T; if ReScl then gcdn := gcd(gcd(numer(Vp[1]), numer(Vp[2])), numer(Vp[3])); gcdd := gcd(gcd(denom(Vp[1]), denom(Vp[2])), denom(Vp[3])); Vp := simplify(Vp*gcdd/gcdn) end if; if Prntmsg then print("Line vector from two projective points. ") end if; return Vp end proc, proc (A::(Vector[column]), B::(Vector[column]), prnt::boolean := Prntmsg) local Vp; option overload; description "2 lines to get intersection projective point"; Vp := LinearAlgebra:-CrossProduct(A, B)^%T; if Vp[3] <> 0 and Normalise_Projective_Point <> 0 then Vp := Vp/Vp[3] end if; if Prntmsg then print("Meet of two Lines ") end if; return Vp end proc] end proc

(2)

#maplemint(ProjLP)

pt1:=<a|sqrt(b^2+c^2)|1>:
pt2:=<c|sqrt(b^2+a^2)|1>:
pt3:=<f^2/sqrt(a^2+b^2)|f^2/sqrt(c^2+b^2)+sqrt(a^2+b^2)|1>:
pt4:=<b^2/sqrt(a^2+b^2)|f^2/sqrt(c^2+b^2)-sqrt(a^2+b^2)|1>:

 

l1:=ProjLP(pt1,pt2)

"Line vector from two projective points. "

 

Vector[column](%id = 36893490491002736020)

(3)

l2:=ProjLP(pt3,pt4)

"Line vector from two projective points. "

 

Vector[column](%id = 36893490491002712420)

(4)

l3:=ProjLP(pt1,pt4)

"Line vector from two projective points. "

 

Vector[column](%id = 36893490491064062908)

(5)

l4:=ProjLP(pt2,pt4)

"Line vector from two projective points. "

 

Vector[column](%id = 36893490491064037372)

(6)

pl1l2:=simplify(ProjLP(l1,l2))

"Meet of two Lines "

 

Vector[row](%id = 36893490491002741932)

(7)

pl2l3:=simplify(ProjLP(l2,l3))

"Meet of two Lines "

 

Vector[row](%id = 36893490491113907252)

(8)

(ProjLP(pl1l2,pl2l3));
length(%)

"Line vector from two projective points. "

 

Vector[column](%id = 36893490491113907972)

 

6223

(9)

ReScl:=false

false

(10)