Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I'm trying to solve an ODE system from an IVP problem, but the error occurs: "Error, (in ...) cannot evaluate the solution further left of ..., maxfun limit exceeded (see ?dsolve,maxfun for details)"

I've already tried modifying the maxfun value but this did not work. I would like some suggestion.

Thank you

ODE_System.mw

Hello, 

 I created my own costum package and I want to edit this package: insert procedures or modules. Is there a way?

Thank you.

What's going on here? Am I missing something, or is it a bug? If it's a bug, then it's by far the deepest and most profound bug that I've ever found or seen in Maple (and I've seen thousands over the decades). And since that surprises me, my guess is that I'm missing something obvious.

restart:
Op:= (R,F)-> F(['R()'$2]):
Op(rand(1..9), [f,f]);
                     [f([7, 6]), f([2, 4])]

The expected output is [f([7,6]), f([7,6])]. The same thing happens if I replace with seq, or if I replace -> with proc.

pls help me cirrect this. i am trying to use finite element method to siolve a fluid equation. The code is give below

> pde := alpha^2*(diff(u(t, r), t))+2*(-1/2)^(1/n)*(diff(u(t, r), r))/r-(-1/2)^((1-n)/n)*(diff(u(t, r), `$`(r, 2)))*(diff(u(t, r), r))^(1/n-1)/n+2*theta/r-4*(1+e)+4*B*cos(.2) = 0; /1\ |-| \n/ /-1\ / d \ 2 |--| |--- u(t, r)| 2 / d \ \2 / \ dr / alpha |--- u(t, r)| + ----------------------- \ dt / r /1 - n\ /1 \ |-----| |- - 1| \ n / \n / /-1\ / d / d \\ / d \ |--| |--- |--- u(t, r)|| |--- u(t, r)| \2 / \ dr \ dr // \ dr / 2 theta - ---------------------------------------------------- + ------- - 4 - 4 e n r + 3.920266311 B = 0 > tmax := 0.5e-1; > rmin := 0; > rmax := 10; > N := 6; > bc1 := diff(u(t, r = rmin), r) = 1/mu; > bc2 := u(t, r = rmax) = 0; > ic1 := u(0, r) = 0; > PDE*Boundary*condition*colllection; > bcs := {u(0, r) = rhs(ic1), D[1](diff(u(t, r = rmin), r)) = rhs(bc1), (D[1](u))(t, r = rmax) = rhs(bc2)}; / / d \ 1 \ { u(0, r) = 0, D[1]|--- u(t, r = 0)| = --, D[1](u)(t, r = 10) = 0 } \ \ dr / mu / > > Collocation*method; > Typesetting[delayDotProduct](Define*a*simple*function*with*known*solution.one, can, true)*choose*either*a*trigonometric*function, othorgonal*polynomia, (Typesetting[delayDotProduct](legendre*polynomia*etc.we, want, true)*will*choose*a*simple*polynomia*which*will)*make*our*work*easier; > basis := r^i; > uhat := sum(A[i](t)*basis, i = 0 .. N-1); > Alist := indets(uhat, function(identical(t))); > Here, we*will*determine*the^2*two*unknowns*(A1, A2)*using*boundary*conditions; > duhat := diff(uhat, r); > knownAs := solve({subs(r = rmin, duhat) = rhs(bc1), subs(A[1](t) = 0, r = rmax, duhat) = rhs(bc2)}, {A[1](t), A[2](t)}); > unknownAs := `minus`(Alist, {seq(lhs(knownAs[i]), i = 1 .. nops(knownAs))}); > `and`(uhat*after*substituting*A1, A2); > uhat := subs(knownAs, uhat); > uhat := collect(uhat, Alist); > Residual*function*is*obtai*ned*after*substituting*uhat*into*the*original*pde; > residual := eval(subs(u(t, r) = uhat, pde)); > residual := collect(residual, r); > `and`(Typesetting[delayDotProduct](Now*we*choose*points*where*exact*solution*must*be*matched.since, we, true)*have*point*A[1], A[2]), we*will*only*need*N-2*points; > odes := {seq(subs(r = i*rmax/N, residual), i = 1 .. nops(unknownAs))}; > Find*ICs*of*unknown*A(t)*s; > iceqs := {seq(subs(t = 0, r = i*rmax/N, uhat) = rhs(bc2), i = 1 .. nops(unknownAs))}; > ics := solve(iceqs, subs(t = 0, unknownAs)); > > sols := dsolve(`union`(odes, ics)); Warning, computation interrupted > Approximate*solution; > uhat := subs(sols, uhat); Error, invalid input: subs received sols, which is not valid for its 1st argument > uhat := collect(uhat, r); > Plot*solution; > plot3d(uhat, r = 0 .. rmax, t = 0 .. tmax, axes = boxed, lightmodel = light4, orientation = [-120, 40], shading = zhue, transparency = .3); Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct > >

The question is all in the title really. I am struggling to make a subsection on my macbook, using 2018 Maple software. The cmd + shift + . will only make sections, regardless of where i place my cursor.

I am trying to solve improper integrals using Maple. I need to choose at least one from attached and I am leaning towards number 26 but I am having trouble. I am new to Maple and have no idea where to even begin. Please provide the correct steps needed to get to the right answer.

Hi there:

i use Grid:-Map() to run some code on many cores. When I set

Grid:-Setup(numnodes=23);

everything runs fine. When I set (note I have 28 logical cores present):

Grid:-Setup(numnodes=24);

I get the "stack limit reached" message (see attached image below). I've explored setting stack limits to 'unlimited' at the OS level (ubuntu 18.04), as well as setting

kernelopts(stacklimit=infinity)

However, these do not help, and I still end up with the same message.

Any ideas what could be the problem? Also, I am assuming that kernelopts settings get passed to other, spawned kernels, but even if not, I experimented with setting this directly inside the function that gets passed to Grid:-Map()

thanks

 

 

 

 

a:=sin(theta3(t))*(diff(theta3(t), t))^2*cos(theta1(t))*l1*l3*m3+sin(theta3(t))*(diff(theta3(t), t))^2*cos(theta1(t))*l1*l3*mi+sin(theta3(t))*(diff(theta3(t), t))^2*cos(theta1(t))*l1*l3*m4+l1^2*m2*(diff(theta1(t), t, t))-sin(theta3(t))*(diff(theta3(t), t))^2*cos(theta1(t))*l1*lc3*m3+sin(theta4(t))*(diff(theta4(t), t))^2*cos(theta1(t))*l1*l4*mi+sin(theta4(t))*(diff(theta4(t), t))^2*cos(theta1(t))*l1*l4*m4-sin(theta4(t))*(diff(theta4(t), t))^2*cos(theta1(t))*l1*lc4*m4+sin(theta6(t))*(diff(theta6(t), t))^2*cos(theta1(t))*h2*l1*ml+sin(theta6(t))*(diff(theta6(t), t))^2*cos(theta1(t))*h2*l1*m3+l1^2*ml*(diff(theta1(t), t, t))+l1^2*mr*(diff(theta1(t), t, t))+cos(theta2(t))*cos(theta1(t))*l1*l2*ml*(diff(theta2(t), t, t))+cos(theta2(t))*cos(theta1(t))*l1*l2*mc*(diff(theta2(t), t, t))+sin(theta5(t))*sin(theta1(t))*h2*l1*mi*(diff(theta5(t), t, t))-cos(theta3(t))*cos(theta1(t))*l1*l3*m4*(diff(theta3(t), t, t))+cos(theta5(t))*cos(theta1(t))*h2*l1*mc*(diff(theta5(t), t, t))+sin(theta6(t))*(diff(theta6(t), t))^2*cos(theta1(t))*h2*l1*mi+sin(theta6(t))*(diff(theta6(t), t))^2*cos(theta1(t))*h2*l1*m4-sin(theta5(t))*(diff(theta5(t), t))^2*cos(theta1(t))*h2*l1*mi-sin(theta5(t))*(diff(theta5(t), t))^2*cos(theta1(t))*h2*l1*m4-sin(theta5(t))*(diff(theta5(t), t))^2*cos(theta1(t))*h2*l1*m3-sin(theta5(t))*(diff(theta5(t), t))^2*cos(theta1(t))*h2*l1*mr-sin(theta5(t))*(diff(theta5(t), t))^2*cos(theta1(t))*h2*l1*mc-sin(theta2(t))*(diff(theta2(t), t))^2*cos(theta1(t))*l1*l2*m3-sin(theta2(t))*(diff(theta2(t), t))^2*cos(theta1(t))*l1*lc2*m2-sin(theta2(t))*(diff(theta2(t), t))^2*cos(theta1(t))*l1*l2*mr+sin(theta2(t))*sin(theta1(t))*l1*l2*ml*(diff(theta2(t), t, t))+cos(theta5(t))*cos(theta1(t))*h2*l1*mi*(diff(theta5(t), t, t))+l1^2*m4*(diff(theta1(t), t, t))+sin(theta5(t))*sin(theta1(t))*h2*l1*m3*(diff(theta5(t), t, t))+cos(theta3(t))*cos(theta1(t))*l1*lc3*m3*(diff(theta3(t), t, t))-sin(theta3(t))*sin(theta1(t))*l1*l3*m4*(diff(theta3(t), t, t))-cos(theta6(t))*cos(theta1(t))*h2*l1*m4*(diff(theta6(t), t, t))-sin(theta4(t))*sin(theta1(t))*l1*l4*m4*(diff(theta4(t), t, t))-sin(theta2(t))*(diff(theta2(t), t))^2*cos(theta1(t))*l1*l2*mi-sin(theta2(t))*(diff(theta2(t), t))^2*cos(theta1(t))*l1*l2*mc-sin(theta2(t))*(diff(theta2(t), t))^2*cos(theta1(t))*l1*l2*ml-sin(theta2(t))*(diff(theta2(t), t))^2*cos(theta1(t))*l1*l2*m4-sin(theta7(t))*(diff(theta7(t), t))^2*cos(theta1(t))*h3*l1*mc-cos(theta4(t))*cos(theta1(t))*l1*l4*mi*(diff(theta4(t), t, t))+cos(theta2(t))*cos(theta1(t))*l1*l2*mr*(diff(theta2(t), t, t))-cos(theta6(t))*(diff(theta6(t), t))^2*sin(theta1(t))*h2*l1*mi-cos(theta6(t))*(diff(theta6(t), t))^2*sin(theta1(t))*h2*l1*m4+cos(theta5(t))*(diff(theta5(t), t))^2*sin(theta1(t))*h2*l1*m3+cos(theta5(t))*(diff(theta5(t), t))^2*sin(theta1(t))*h2*l1*mi+cos(theta5(t))*(diff(theta5(t), t))^2*sin(theta1(t))*h2*l1*mc+cos(theta5(t))*(diff(theta5(t), t))^2*sin(theta1(t))*h2*l1*mr+cos(q2(t))*sin(theta1(t))*l1*l2*mi*(diff(theta2(t), t))*(diff(theta1(t), t))+cos(q2(t))*sin(theta1(t))*l1*l2*m4*(diff(theta2(t), t))*(diff(theta1(t), t))+cos(q2(t))*sin(theta1(t))*l1*lc2*m2*(diff(theta2(t), t))*(diff(theta1(t), t))+cos(q2(t))*sin(theta1(t))*l1*l2*m3*(diff(theta2(t), t))*(diff(theta1(t), t))+cos(q2(t))*sin(theta1(t))*l1*l2*mc*(diff(theta2(t), t))*(diff(theta1(t), t))+cos(q2(t))*sin(theta1(t))*l1*l2*ml*(diff(theta2(t), t))*(diff(theta1(t), t))+cos(q2(t))*sin(theta1(t))*l1*l2*mr*(diff(theta2(t), t))*(diff(theta1(t), t))-sin(q2(t))*cos(theta1(t))*l1*l2*mc*(diff(theta2(t), t))*(diff(theta1(t), t))-sin(q2(t))*cos(theta1(t))*l1*l2*m4*(diff(theta2(t), t))*(diff(theta1(t), t))-sin(q2(t))*cos(theta1(t))*l1*l2*mr*(diff(theta2(t), t))*(diff(theta1(t), t))-sin(q2(t))*cos(theta1(t))*l1*l2*m3*(diff(theta2(t), t))*(diff(theta1(t), t))-sin(q2(t))*cos(theta1(t))*l1*l2*mi*(diff(theta2(t), t))*(diff(theta1(t), t))-sin(q2(t))*cos(theta1(t))*l1*l2*ml*(diff(theta2(t), t))*(diff(theta1(t), t))-sin(q2(t))*cos(theta1(t))*l1*lc2*m2*(diff(theta2(t), t))*(diff(theta1(t), t))-cos(theta3(t))*(diff(theta3(t), t))^2*sin(theta1(t))*l1*l3*mi+cos(theta3(t))*(diff(theta3(t), t))^2*sin(theta1(t))*l1*lc3*m3-cos(theta4(t))*(diff(theta4(t), t))^2*sin(theta1(t))*l1*l4*m4-cos(theta4(t))*(diff(theta4(t), t))^2*sin(theta1(t))*l1*l4*mi+cos(theta4(t))*(diff(theta4(t), t))^2*sin(theta1(t))*l1*lc4*m4-cos(theta6(t))*(diff(theta6(t), t))^2*sin(theta1(t))*h2*l1*ml-cos(theta6(t))*(diff(theta6(t), t))^2*sin(theta1(t))*h2*l1*m3-cos(theta3(t))*(diff(theta3(t), t))^2*sin(theta1(t))*l1*l3*m4-cos(theta3(t))*(diff(theta3(t), t))^2*sin(theta1(t))*l1*l3*m3+l1^2*mc*(diff(theta1(t), t, t))-cos(theta4(t))*cos(theta1(t))*l1*l4*m4*(diff(theta4(t), t, t))+cos(theta5(t))*cos(theta1(t))*h2*l1*mr*(diff(theta5(t), t, t))+cos(theta2(t))*cos(theta1(t))*l1*lc2*m2*(diff(theta2(t), t, t))+cos(theta1(t))*g*l1*mr+cos(theta1(t))*g*l1*m3+cos(theta1(t))*g*l1*m2+cos(theta1(t))*g*l1*m4+cos(theta1(t))*g*l1*ml+cos(theta1(t))*g*l1*mc+m1*g*lc1*cos(theta1(t))+cos(theta1(t))*g*l1*mi+cos(theta5(t))*cos(theta1(t))*h2*l1*m3*(diff(theta5(t), t, t))-cos(theta2(t))*sin(theta1(t))*(diff(theta1(t), t))*l1*l2*m4*(diff(theta2(t), t))+cos(theta2(t))*(diff(theta2(t), t))^2*sin(theta1(t))*l1*l2*mc+sin(theta2(t))*cos(theta1(t))*(diff(theta1(t), t))*l1*l2*mc*(diff(theta2(t), t))+cos(theta7(t))*(diff(theta7(t), t))^2*sin(theta1(t))*h3*l1*mc+l1^2*m3*(diff(theta1(t), t, t))+l1^2*mi*(diff(theta1(t), t, t))+cos(theta5(t))*(diff(theta5(t), t))^2*sin(theta1(t))*h2*l1*m4-cos(theta2(t))*sin(theta1(t))*(diff(theta1(t), t))*l1*l2*m3*(diff(theta2(t), t))+cos(theta2(t))*(diff(theta2(t), t))^2*sin(theta1(t))*l1*l2*ml+sin(theta2(t))*cos(theta1(t))*(diff(theta1(t), t))*l1*l2*ml*(diff(theta2(t), t))-cos(theta2(t))*sin(theta1(t))*(diff(theta1(t), t))*l1*lc2*m2*(diff(theta2(t), t))+cos(theta2(t))*(diff(theta2(t), t))^2*sin(theta1(t))*l1*l2*mr+sin(theta2(t))*cos(theta1(t))*(diff(theta1(t), t))*l1*l2*mr*(diff(theta2(t), t))+cos(theta2(t))*(diff(theta2(t), t))^2*sin(theta1(t))*l1*l2*m4+sin(theta2(t))*cos(theta1(t))*(diff(theta1(t), t))*l1*l2*m4*(diff(theta2(t), t))+cos(theta2(t))*(diff(theta2(t), t))^2*sin(theta1(t))*l1*l2*mi+sin(theta2(t))*cos(theta1(t))*(diff(theta1(t), t))*l1*l2*mi*(diff(theta2(t), t))-cos(theta2(t))*sin(theta1(t))*(diff(theta1(t), t))*l1*l2*mr*(diff(theta2(t), t))-cos(theta2(t))*sin(theta1(t))*(diff(theta1(t), t))*l1*l2*mi*(diff(theta2(t), t))+cos(theta2(t))*(diff(theta2(t), t))^2*sin(theta1(t))*l1*l2*m3+sin(theta2(t))*cos(theta1(t))*(diff(theta1(t), t))*l1*l2*m3*(diff(theta2(t), t))-cos(theta2(t))*sin(theta1(t))*(diff(theta1(t), t))*l1*l2*mc*(diff(theta2(t), t))-cos(theta2(t))*sin(theta1(t))*(diff(theta1(t), t))*l1*l2*ml*(diff(theta2(t), t))+cos(theta2(t))*(diff(theta2(t), t))^2*sin(theta1(t))*l1*lc2*m2+sin(theta2(t))*cos(theta1(t))*(diff(theta1(t), t))*l1*lc2*m2*(diff(theta2(t), t))+sin(theta2(t))*sin(theta1(t))*l1*l2*m3*(diff(theta2(t), t, t))+cos(theta2(t))*cos(theta1(t))*l1*l2*m3*(diff(theta2(t), t, t))+cos(theta2(t))*cos(theta1(t))*l1*l2*mi*(diff(theta2(t), t, t))+cos(theta5(t))*cos(theta1(t))*h2*l1*m4*(diff(theta5(t), t, t))+sin(theta2(t))*sin(theta1(t))*l1*l2*mr*(diff(theta2(t), t, t))+m1*lc1^2*(diff(theta1(t), t, t))-sin(theta6(t))*sin(theta1(t))*h2*l1*m4*(diff(theta6(t), t, t))+sin(theta5(t))*sin(theta1(t))*h2*l1*mr*(diff(theta5(t), t, t))+sin(theta5(t))*sin(theta1(t))*h2*l1*mc*(diff(theta5(t), t, t))-cos(theta6(t))*cos(theta1(t))*h2*l1*mi*(diff(theta6(t), t, t))-sin(theta6(t))*sin(theta1(t))*h2*l1*mi*(diff(theta6(t), t, t))-cos(theta6(t))*cos(theta1(t))*h2*l1*m3*(diff(theta6(t), t, t))-sin(theta6(t))*sin(theta1(t))*h2*l1*m3*(diff(theta6(t), t, t))+sin(theta2(t))*sin(theta1(t))*l1*lc2*m2*(diff(theta2(t), t, t))+cos(theta2(t))*cos(theta1(t))*l1*l2*m4*(diff(theta2(t), t, t))+sin(theta2(t))*sin(theta1(t))*l1*l2*mc*(diff(theta2(t), t, t))+sin(theta3(t))*sin(theta1(t))*l1*lc3*m3*(diff(theta3(t), t, t))-cos(theta3(t))*cos(theta1(t))*l1*l3*mi*(diff(theta3(t), t, t))-sin(theta3(t))*sin(theta1(t))*l1*l3*mi*(diff(theta3(t), t, t))-cos(theta3(t))*cos(theta1(t))*l1*l3*m3*(diff(theta3(t), t, t))-sin(theta3(t))*sin(theta1(t))*l1*l3*m3*(diff(theta3(t), t, t))+cos(theta7(t))*cos(theta1(t))*h3*l1*mc*(diff(theta7(t), t, t))-cos(theta6(t))*cos(theta1(t))*h2*l1*ml*(diff(theta6(t), t, t))+sin(theta7(t))*sin(theta1(t))*h3*l1*mc*(diff(theta7(t), t, t))-sin(theta6(t))*sin(theta1(t))*h2*l1*ml*(diff(theta6(t), t, t))+sin(theta4(t))*sin(theta1(t))*l1*lc4*m4*(diff(theta4(t), t, t))+cos(theta4(t))*cos(theta1(t))*l1*lc4*m4*(diff(theta4(t), t, t))-sin(theta4(t))*sin(theta1(t))*l1*l4*mi*(diff(theta4(t), t, t))+sin(theta2(t))*sin(theta1(t))*l1*l2*m4*(diff(theta2(t), t, t))+sin(theta2(t))*sin(theta1(t))*l1*l2*mi*(diff(theta2(t), t, t))+sin(theta5(t))*sin(theta1(t))*h2*l1*m4*(diff(theta5(t), t, t))

Hi 

I am having problems with the syntax/symbols i maple. I down know what "setting" has changed but + and - and so on, has change to K and C. anyone know how to fix this?

Regards

Morten

 

Define a piecewise function of  so that the the value of the function is  if  or if , it is equal to the vertical distance between the curves if . Numerically integrate the area under this curve on the non-zero interval and explain how the numerical answer is what you would anticipate the answer to be given that this curve is related to semi-circles.

Hi. Can anyone help me with this error, it says 

Error, (in unknown) cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

restart

Shootlib := "F:\MAPLE\3";

"F:MAPLE3"

(1)

libname := Shootlib, libname;

"F:MAPLE3", "C:\Program Files\Maple 2015\lib", "."

(2)

with(Shoot);

[shoot]

(3)

with(plots):

``

FNS := {`φp`(eta), f(eta), fp(eta), fpp(eta), fppp(eta), phi(eta), theta(eta), `θp`(eta)}

{`φp`(eta), f(eta), fp(eta), fpp(eta), fppp(eta), phi(eta), theta(eta), `θp`(eta)}

(4)

ODE := {diff(`φp`(eta), eta) = (-f(eta)*`φp`(eta)+K*phi(eta)*(1-phi(eta))^2)*Sc, diff(f(eta), eta) = fp(eta), diff(fp(eta), eta) = fpp(eta), diff(fpp(eta), eta) = fppp(eta), diff(fppp(eta), eta) = (-fppp(eta)-f(eta)*fpp(eta)+k1*(2*fp(eta)*fppp(eta)-fpp(eta)^2)+lambda*fp(eta)+(1+Fr)*fp(eta)^2)/(k1*f(eta)), diff(phi(eta), eta) = `φp`(eta), diff(theta(eta), eta) = `θp`(eta), diff(`θp`(eta), eta) = (-f(eta)*`θp`(eta)+y*f(eta)*fp(eta)*`θp`(eta))/(1/Pr-y*f(eta)^2)}

{diff(`φp`(eta), eta) = (-f(eta)*`φp`(eta)+K*phi(eta)*(1-phi(eta))^2)*Sc, diff(f(eta), eta) = fp(eta), diff(fp(eta), eta) = fpp(eta), diff(fpp(eta), eta) = fppp(eta), diff(fppp(eta), eta) = (-fppp(eta)-f(eta)*fpp(eta)+k1*(2*fp(eta)*fppp(eta)-fpp(eta)^2)+lambda*fp(eta)+(1+Fr)*fp(eta)^2)/(k1*f(eta)), diff(phi(eta), eta) = `φp`(eta), diff(theta(eta), eta) = `θp`(eta), diff(`θp`(eta), eta) = (-f(eta)*`θp`(eta)+y*f(eta)*fp(eta)*`θp`(eta))/(1/Pr-y*f(eta)^2)}

(5)

blt := 4.; 1; IC := {`φp`(0) = Psi, f(0) = 0, fp(0) = 1, fpp(0) = 0, fppp(0) = alpha, phi(0) = 0, theta(0) = 1, `θp`(0) = beta}

4.

 

{`φp`(0) = Psi, f(0) = 0, fp(0) = 1, fpp(0) = 0, fppp(0) = alpha, phi(0) = 0, theta(0) = 1, `θp`(0) = beta}

(6)

BC := {fp(blt) = 0, fpp(blt) = 0, phi(blt) = 1, theta(blt) = 0};

{fp(4.) = 0, fpp(4.) = 0, phi(4.) = 1, theta(4.) = 0}

(7)

``

infolevel[Shoot:-shoot] := 1:

.7

 

1.0

 

.2

 

.2

 

1.0

 

.3

 

.5

 

.3

(8)

S := shoot(ODE, IC, BC, FNS, [alpha = 3.0125, beta = -2.31, Psi = -0.])

shoot: Step #  1

shoot: Parameter values :  alpha = 3.0125 beta = -2.31 Psi = -0.

Error, (in unknown) cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

p := odeplot(S, [eta, fp(eta)], 0 .. 15)

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

display(p)

Error, (in plots:-display) expecting plot structure but received: p

 

p2 := odeplot(S, [eta, theta(eta)], 0 .. 10)

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

display(p2)

Error, (in plots:-display) expecting plot structure but received: p2

 

p3 := odeplot(S, [eta, phi(eta)], 0 .. 10)

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

display(p3)

Error, (in plots:-display) expecting plot structure but received: p3

 


 

Download Darcy.mw

How do people test BIBD design in maple?

what are the different when using different field when test design ?

how to design a game that is suitable for the specified field of the design?

How can I activate my maple 13?

I have no activatIon left but installed maple

once

My purchase Code is BNN7VMT4BPFN7ESG

Thank. You 

Hi,

     I am new to Maple and my task is to find an analytical solution of Lateral Vibrations of Beams. Even though I referred this forum to get an idea about solving a fourth order ODE bvp,I still couldn't find the solution. Although a non trivial solution exists for this case, Maple is still returning a trivial output(i.e the determinant is not returning zero). I need to find the value of constants C1 to C4 but I am unable to understand what the error is. I have attached the file containing my current solution below.

SOP2.mw

Any help will be appreciated,

Kind Regards,

Ajay

 

 

How to generate any possible points projective plane for sets of numbers?

bonus is any possible field

First 13 14 15 16 17 18 19 Last Page 15 of 1573