Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Can i make Explore with number of parameters differs from parameter in explore?
For excemple i whant to make sum with 'l' values wich will declorate in explore, and 'l' - count of them will declorate in same explore, but it dont work, so is it posible?
 

restart

``

``

Explore(add(cat('c', eval('i')), i = 1 .. l), parameters = [l = [seq(i, i = 1 .. 5)], seq(cat('c', eval('i')) = 0 .. 1.0, i = 1 .. l)])

Error, unable to execute seq

 

``

ec := proc (l) global f, p; f := add(cat('c', eval('i')), i = 1 .. l); print(f); p := [seq(cat('c', eval('i')) = 0 .. 1.0, i = 1 .. l)]; Explore(f, parameters = p) end proc;

proc (l) global f, p; f := add(cat('c', eval('i')), i = 1 .. l); print(f); p := [seq(cat('c', eval('i')) = 0 .. 1.0, i = 1 .. l)]; Explore(f, parameters = p) end proc

(1)

``

ec(4);

c1+c2+c3+c4

(2)

Explore(ec(l), l = [seq(i, i = 1 .. 5)])

c1

(3)

``

NULL


 

Download Explore_Problem_Exemple.mw

 

Dear Friends, I work with physics paсkage. I have a quation. I don't understend how one works with metrics. For example, let:

Nice!
Very good!

1) It doesn't work. Why? (I want exactly gamma_[A,B], rather than g_[A,B], because as i guess gamma_[A,B] has a signature [1,1,1] but g_[A,B] has a signature [-1,-1,-1])

 2) And how may I see what is matrices g_[A, B], gamma_[A, B] explicitly? That is I know how to see what is g_[mu, nu], for this one needs write "g_[];".  But how may I see g_[A, B] and gamma_[A, B] in explicitly forms?

3) Why command Trace(g_[mu, nu]))  does not work?"

Hi,

I get an error when I try to create a modelica block including a piecewise function with one of its expressions including csgn function.

similarly when I use the piecewise And for its conditions.

are these not supported in Modelica?

Hello,
When I try to put the Gcdex in a procedure and start maplemint, then there occurs an error.

Gcdex(x^2 - 1, x - 2, x ,'s','t') mod 3;

--> works

But:

restart;
a := proc()
    Gcdex(x^2 - 1, x - 2, x ,'s','t') mod 3;
end proc;
maplemint(a);

Then there is an error I don't understand.

Error, (in maplemint/expression) not implemented POLY

By the way I have a fundamental problem to understand, where the values s and t are saved after calling Gcdex (or Quo, Rem, etc.). Till now I thought, that variables s and t are created, but when I declare s, t at the beginning as local variables and start maplemint, then there is something like:

    These parameters have the same name as constants:
      3
    These local variables were used before they were assigned a value:
      r::name, (-x-1)::name, (x-1)::name

So the names of s and t changed, they don't assign a new value? I don't understand that.

 

How do I make find and replace work?  Currently the replace and find button is grayed out.  What magic gets me into a state where the button can be used?

Thanks

P.S. Is there any "package" or "mode" or way some how that emacs key bindings can be made to work (including things like find and replace)?  The user interface would be much improved if I knew how to enable that.

I having a hard time with defining a vector, in order to store in it some data, then plot it and export it to a file, I copied all what's in the help instructures but it doesn't work everytime, please it's urgent for my PhD thesis !

Hello dear Maple,

My name is Bulat, I'm student of Kazan National Research Technical University ( Russia). In our High Program we used your product ( Maple V, Release 4). Now I have two problems and I haven't no idea how I resolve their. I am forced to ask for your help. I upload PrintScreen of my two problems. Please help me to solve them. I' ll be grateful for your help. Sorry for my English :(.

Yours very truly, Bulat

I  encountered a non-integrable integral in the process of solving the following process, . How to achieve its numerical solution? Such as in a looping   code:

#######
pa[i] := pa[i-1]-(Int(subs(t = tau, Lpa[i-1]+Na1[i-1]-Na2[i-1]), tau = 0 .. t)); 

pw[i] := pw[i-1]-(Int(subs(t = tau, Lpw[i-1]+Nw1[i-1]-Nw2[i-1]), tau = 0 .. t)); u[i] := u[i-1]-(Int(subs(t = tau, Lu[i-1]+Nu1[i-1]+Nu2[i-1]), tau = 0 .. t));

######
Detailed code see annexBC2.mw

what does it means and what it will do. Can some one help me for solving this

Shootlib := "C:/Shoot9"; libname := Shootlib, libname; with(Shoot);

while i m receiving the following message:

"Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received Shoot "

Full program is :

restart; Shootlib := "C:/Shoot9"; libname := Shootlib, libname; with(Shoot);
with(plots):
N1 := 1.0; N2 := 2.0; N3 := .5; Bt := 6; Re_m := N1*Bt; gamma1 := 1;
FNS := {f(eta), fp(eta), fpp(eta), g(eta), gp(eta), m(eta), mp(eta), n(eta), np(eta), fppp(eta)};
ODE := {diff(f(eta), eta) = fp(eta),
        diff(fp(eta), eta) = fpp(eta),
        diff(fpp(eta), eta) = fppp(eta),
        diff(g(eta), eta) = gp(eta),
        diff(gp(eta), eta) = N1*(2.*g(eta)+(eta-2.*f(eta))*gp(eta)+2.*g(eta)*fp(eta)+2.*N2*N3*(m(eta)*np(eta)-n(eta)*mp(eta))),
        diff(m(eta), eta) = mp(eta),
        diff(mp(eta), eta) = Re_m*(m(eta)+(eta-2.*f(eta))*mp(eta)+2.*m(eta)*fp(eta)),
        diff(n(eta), eta) = np(eta),
        diff(np(eta), eta) = Re_m*(2.*n(eta)+(eta-2.*f(eta))*np(eta)+2.*N2/N3*m(eta)*gp(eta)),
        diff(fppp(eta), eta) = N1*(3.*fpp(eta)+(eta-2.*f(eta))*fppp(eta)-2.*N2*N2*m(eta)*(diff(mp(eta), eta)))
       }:
   
blt := 1.0;
IC := { f(0) = 0,
        fp(0) = 0,
        fpp(0) = alpha1,
        g(0) = 1,
        gp(0) = beta1,
        m(0) = 0,
        mp(0) = beta2,
        n(0) = 0,
        np(0) = beta3,
        fppp(0) = alpha2
      };
BC := { f(blt) = .5,
        fp(blt) = 0,
        g(blt) = 0,
        m(blt) = 1,
        n(blt) = 1};
infolevel[shoot] := 1;
 

HI

please help me for dsolve this nonlinear differential equations

thanls...

HAB.mw
 

restart; Digite := 100; Phi0 := 5; A := b*h; g13 := 31/250000000; g1 := 113/500000; f13 := 1/1000000000; c1 := 226000000000000; b := 10*10^(-9); J := (1/12)*b*h^3; h := 15*10^(-9); L := 100*10^(-9); E1 := (339/10000000000000000000000)*(diff(u(x), x, x, x, x))+(1017/10000000000000000000000)*(diff(w(x), x, x))*(diff(w(x), x, x, x))+(339/10000000000000000000000)*(diff(w(x), x, x, x, x))*(diff(w(x), x))-(339/10000)*(diff(u(x), x, x))-(339/10000)*(diff(w(x), x))*(diff(w(x), x, x)) = 0

E2 := -(1017/1600000000000000000000000000000000000000)*(diff(w(x), x, x, x, x, x, x))+(1589109/2500000000000000000000000)*(diff(w(x), x, x, x, x))-(339/10000*(diff(u(x), x, x)+(diff(w(x), x))*(diff(w(x), x, x))))*(diff(w(x), x))-(diff(w(x), x, x))*((339/10000)*(diff(u(x), x))+(339/20000)*(diff(w(x), x))^2+0.5824000000e-4)+(339/10000000000000000000000)*(diff(w(x), x, x))*(diff(u(x), x, x, x)+(diff(w(x), x, x))^2+(diff(w(x), x, x, x))*(diff(w(x), x)))+(339/10000000000000000000000)*(diff(w(x), x))*(diff(u(x), x, x, x, x)+3*(diff(w(x), x, x))*(diff(w(x), x, x, x))+(diff(w(x), x, x, x, x))*(diff(w(x), x)))-2 = 0:
 

E3 := -5.385803274*10^(-17)*(diff(Phi(x), x, x))+2.659881780*Phi(x)-5.125107476*10^(-20)*(diff(psi(x), x, x))+1.146681319*psi(x)+3.300000000*10^(-8)*(diff(w(x), x, x)) = 0:

E4 := -5.125107476*10^(-20)*(diff(Phi(x), x, x))+1.146681319*Phi(x)+(891/100000000000000)*(diff(psi(x), x, x))/Pi+34976.39822*psi(x)+0.4351500000e-5*(diff(w(x), x, x)) = 0:

dsys3 := {EQ1, EQ2, EQ3, EQ4, c1*J*((D@@2)(w))(0)+A*g13*((D@@2)(w))(0)-2*b*f13*Phi0-g1*J*((D@@4)(w))(0)+g1*A*(((D@@2)(u))(0)+((D@@1)(w))(0)*((D@@2)(w))(0))*((D@@1)(w))(0) = 0, c1*J*((D@@2)(w))(L)+A*g13*((D@@2)(w))(L)-2*b*f13*Phi0-g1*J*((D@@4)(w))(L)+g1*A*(((D@@2)(u))(L)+((D@@1)(w))(L)*((D@@2)(w))(L))*((D@@1)(w))(L) = 0, Phi(0) = 0, Phi(L) = 0, psi(0) = 0, psi(L) = 0, u(0) = 0, u(L) = 0, w(0) = 0, w(L) = 0, (D(u))(0) = 0, (D(u))(L) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(L) = 0}; dsolve(dsys3, numeric, initmesh = 3024, abserr = 0.1e-4)

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

``


 

Download HAB.mw

 

I uploaded this file AnimationTest.mw to the Maple Cloud. One a 3d animation and one just a 3d plot. When I open the file in the Maple Cloud from my browser,  I cannot rotate either plot with the mouse. Is there a way to change the worksheets so rotation from the browser will be possible?

I Could Not Write An If Then Or Ifelse Statement. Please Help Me.

f := unapply(x^2-2, x); a := 1; b := 2; n := 10; Digits := 10;
      2    
x -> x  - 2
                               1
                               2
                               10
                               10
c := evalf(eval((a*f(b)-b*f(a))/(f(b)-f(a))));
                          1.333333333
if  f(c)*f(a)<0 then ;
          "      k:=evalf(eval(|(f(c))/(b-c)|)) and "

                          /(1 + k) a f(b) - b f(a)\
             x[i] := evalf|-----------------------|
                          \  (1 + k) f(b) - f(a)  /
            "     elif f(x[i])*f(a)<0 then b:=x[i]"
                 "     else b:=c and a:=x[i] "
                  "     if f(c)*f(a)>0 then "
                 "      k:=|(f(c))/(b-c)|and "

                          /a f(b) - b f(a) (1 + k)\
             x[i] := evalf|-----------------------|
                          \  f(b) - f(a) (1 + k)  /
            "     elif f(x[i])*f(a)>0 then a:=x[i]"
              "     else a:=c and b:=x[i] end if"

Error, unterminated 'if' statement
     Typesetting:-mambiguous(Typesetting:-mambiguous(

       if fApplyFunction(c)sdotfApplyFunction(a)lt0 then , 

       Typesetting:-merror("unterminated 'if' statement")))

Im trying to solve 12 equations with 12 variables but I can't solve. Please help and advise me to solve this problem. Iproject3.mw
project3.mw

 

 

 

Hi, I have a big system with 27 polynomial equations in 16 unknowns: f_1=...=f_27=0.  I can store these equations but I cannot calculate a Grobner basis of the ideal  J generated by my polynomials (allocation problem) - I use the library "with(FGb)"-  What interests me is whether my system is minimal in the following sense.

If, for example,  I remove f_1, is the ideal generated by (f_2,...f_27)  J again ? That is to say, is f_1 in the ideal generated by f_2,...,f_27 ? I would like to get an answer "yes" or "no" for each removed  f_i.

My question: can we solve the problem above  without calculating a Grobner basis of J?

Thanks in advance.

 

 

 

 

 


 

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d

diff(Q(t), t) = h__1(t)*A*(T__1(t)-T__1s(t))

diff(Q(t), t) = h__2(t)*A*(T__2s(t)-T__2(t))

Q(t) = m__1*c__p*(T__1i-T__1(t))

Q(t) = m__2*c__p*(T__2(t)-T__2i)

h__1(t) = k(T__1(t), T__1s(t))*(.825+.387*(g*h^3*c__p*beta(T__1(t), T__1s(t))*rho(T__1(t), T__1s(t))^2*(T__1(t)-T__1s(t))/(k(T__1(t), T__1s(t))*mu(T__1(t), T__1s(t))))^(1/6)/(1+(.492*k(T__1(t), T__1s(t))/(c__p*mu(T__1(t), T__1s(t))))^(9/16))^(8/27))^2/h

h__2(t) = k(T__2(t), T__2s(t))*(.825+.387*(g*h^3*c__p*beta(T__2(t), T__2s(t))*rho(T__2(t), T__2s(t))^2*(T__2s(t)-T__2(t))/(k(T__2(t), T__2s(t))*mu(T__2(t), T__2s(t))))^(1/6)/(1+(.492*k(T__2(t), T__2s(t))/(c__p*mu(T__2(t), T__2s(t))))^(9/16))^(8/27))^2/h

 

 

rho(T__1(t), T__1s(t)) = 999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4

beta(T__1(t), T__1s(t)) = -(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)
mu(T__1(t), T__1s(t)) = 2.414*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)

k(T__1(t), T__1s(t)) = -9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949

 

 

rho(T__2(t), T__2s(t)) = 999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4

beta(T__2(t), T__2s(t)) = -(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)
mu(T__2(t), T__2s(t)) = 2.414*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)

k(T__2(t), T__2s(t)) = -9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949

 

"`h__1`(t)=(-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949)/(h) (0.825+(0.387 ((g h^(3) `c__p` (-(4.216485*10^(-2)-7.097451*10^(-3) (`T__1`(t)+`T__1s`(t))+2.63217825*10^(-5) (`T__1`(t)+`T__1s`(t))^(2)-4.9518879*10^(-8) (`T__1`(t)+`T__1s`(t))^(3))/(999.9399+2.1082425*10^(-2) (`T__1`(t)+`T__1s`(t))-1.77436275*10^(-3) (`T__1`(t)+`T__1s`(t))^(2)+0.438696375*10^(-5) (`T__1`(t)+`T__1s`(t))^(3)  -0.6189861563*10^(-8) (`T__1`(t)+`T__1s`(t))^(4))) (999.9399+2.1082425*10^(-2) (`T__1`(t)+`T__1s`(t))-1.77436275*10^(-3) (`T__1`(t)+`T__1s`(t))^(2)+0.438696375*10^(-5) (`T__1`(t)+`T__1s`(t))^(3)  -0.6189861563*10^(-8) (`T__1`(t)+`T__1s`(t))^(4))^(2) (`T__1`(t)-`T__1s`(t)))/((-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949) 2.414*10^((247.8)/(0.5 (`T__1`(t)+`T__1s`(t))+133)-5)))^((1)/(6)))/((1+((0.492 (-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949))/(`c__p` 2.414*10^((247.8)/(0.5 (`T__1`(t)+`T__1s`(t))+133)-5)))^((9)/(16)))^((8)/(27))))^(2)"

"`h__2`(t)=(-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949)/(h) (0.825+(0.387 ((g h^(3) `c__p` (-(4.216485*10^(-2)-7.097451*10^(-3) (`T__2`(t)+`T__2s`(t))+2.63217825*10^(-5) (`T__2`(t)+`T__2s`(t))^(2)-4.9518879*10^(-8) (`T__2`(t)+`T__2s`(t))^(3))/(999.9399+2.1082425*10^(-2) (`T__2`(t)+`T__2s`(t))-1.77436275*10^(-3) (`T__2`(t)+`T__2s`(t))^(2)+0.438696375*10^(-5) (`T__2`(t)+`T__2s`(t))^(3)  -0.6189861563*10^(-8) (`T__2`(t)+`T__2s`(t))^(4))) (999.9399+2.1082425*10^(-2) (`T__2`(t)+`T__2s`(t))-1.77436275*10^(-3) (`T__2`(t)+`T__2s`(t))^(2)+0.438696375*10^(-5) (`T__2`(t)+`T__2s`(t))^(3)  -0.6189861563*10^(-8) (`T__2`(t)+`T__2s`(t))^(4))^(2) (`T__2s`(t)-`T__2`(t)))/((-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949) 2.414*10^((247.8)/(0.5 (`T__2`(t)+`T__2s`(t))+133)-5)))^((1)/(6)))/((1+((0.492 (-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949))/(`c__p` 2.414*10^((247.8)/(0.5 (`T__2`(t)+`T__2s`(t))+133)-5)))^((9)/(16)))^((8)/(27))))^(2)"

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d, diff(Q(t), t) = A*(T__1(t)-T__1s(t))*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)*(.825+.387*(((-g*h^3*c__p*(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)^2))*(T__1(t)-T__1s(t))/(2.414*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949))/(2.414*c__p*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)))^(9/16))^(8/27))^2/h, diff(Q(t), t) = A*(T__2s(t)-T__2(t))*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)*(.825+.387*(((-g*h^3*c__p*(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)^2))*(T__2s(t)-T__2(t))/(2.414*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949))/(2.414*c__p*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)))^(9/16))^(8/27))^2/h, Q(t) = m__1*c__p*(T__1i-T__1(t)), Q(t) = m__2*c__p*(T__2(t)-T__2i)

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d, diff(Q(t), t) = A*(T__1(t)-T__1s(t))*(-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)*(.825+.387*(-.4142502071*g*h^3*c__p*(0.4216485000e-1-0.7097451000e-2*T__1(t)-0.7097451000e-2*T__1s(t)+0.2632178250e-4*(T__1(t)+T__1s(t))^2-0.4951887900e-7*(T__1(t)+T__1s(t))^3)*(999.9399+0.2108242500e-1*T__1(t)+0.2108242500e-1*T__1s(t)-0.1774362750e-2*(T__1(t)+T__1s(t))^2+0.4386963750e-5*(T__1(t)+T__1s(t))^3-0.6189861563e-8*(T__1(t)+T__1s(t))^4)*(T__1(t)-T__1s(t))/(10^(247.8/(.5*T__1(t)+.5*T__1s(t)+133)-5)*(-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)))^(1/6)/(1+.4087338992*((-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)/(c__p*10^(247.8/(.5*T__1(t)+.5*T__1s(t)+133)-5)))^(9/16))^(8/27))^2/h, diff(Q(t), t) = A*(T__2s(t)-T__2(t))*(-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)*(.825+.387*(-.4142502071*g*h^3*c__p*(0.4216485000e-1-0.7097451000e-2*T__2(t)-0.7097451000e-2*T__2s(t)+0.2632178250e-4*(T__2(t)+T__2s(t))^2-0.4951887900e-7*(T__2(t)+T__2s(t))^3)*(999.9399+0.2108242500e-1*T__2(t)+0.2108242500e-1*T__2s(t)-0.1774362750e-2*(T__2(t)+T__2s(t))^2+0.4386963750e-5*(T__2(t)+T__2s(t))^3-0.6189861563e-8*(T__2(t)+T__2s(t))^4)*(T__2s(t)-T__2(t))/(10^(247.8/(.5*T__2(t)+.5*T__2s(t)+133)-5)*(-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)))^(1/6)/(1+.4087338992*((-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)/(c__p*10^(247.8/(.5*T__2(t)+.5*T__2s(t)+133)-5)))^(9/16))^(8/27))^2/h, Q(t) = m__1*c__p*(T__1i-T__1(t)), Q(t) = m__2*c__p*(T__2(t)-T__2i)

(1)

"(->)"

``

``

``

i have a system with 5 dif equations and five unknows. i have told to maple to solve it numerically with interactively solve comand (right cilck button). the window open like it normally does and i put values to my parameters, with an initial condition for the system (Q(0)=0). then i press numerically solve and that's all, the program just keep evaluating with no answer. i wait for 15 min, which i think is too much time, and got any answer yet.

hope you can help with this

thanks.. 
 

Download propuesta_transfer.mw

First 153 154 155 156 157 158 159 Last Page 155 of 2219