Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I am interested in having bold notation for vectors and matrices.

Any commands or packages that output expressions this way?

I’m trying to test a specific function as a solution to a nonlinear ODE in Maple. The equation is of the Riccati type, and my candidate solution involves parameters A, B, and C.

I've used assuming to specify the condition (4AC−B2)>0 and (4AC - B^2) <0, but when I use odetest to verify the solution, I still get a nonzero result. Additionally, when I apply the assumption, Maple sometimes introduces a negation sign in the output (e.g., changing sqrt(...) into -sqrt(...)), which wasn't part of the original solution.

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

E := diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

(2)

S1 := G(xi) = (sqrt(4*A*C-B^2)*tan((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))-B)/(2*C)

G(xi) = (1/2)*((4*A*C-B^2)^(1/2)*tan((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))-B)/C

(3)

odetest(S1, E)

0

(4)

S2 := G(xi) = -(sqrt(4*A*C-B^2)*cot((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))+B)/(2*C)

G(xi) = -(1/2)*((4*A*C-B^2)^(1/2)*cot((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))+B)/C

(5)

odetest(S2, E)

0

(6)

assume(4*A*C-B^2 < 0)

S3 := G(xi) = -(sqrt(4*A*C-B^2)*tanh((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))+B)/(2*C)

G(xi) = -(1/2)*((4*A*C-B^2)^(1/2)*tanh((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))+B)/C

(7)

odetest(S3, E)

-2*A+(1/2)*B^2/C

(8)

Download A2.mw

i did every thing coreectly but nothing happen not apply where is my mistake?

``

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

NULL

S := (diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(2)

SS := diff(G(xi), xi) = sqrt(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))

diff(G(xi), xi) = (r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(3)

Se := sqrt(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2)) = diff(G(xi), xi)

(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2) = diff(G(xi), xi)

(4)

dub := diff(SS, xi)

diff(diff(G(xi), xi), xi) = (1/2)*(2*r^2*G(xi)*(a+b*G(xi)+l*G(xi)^2)*(diff(G(xi), xi))+r^2*G(xi)^2*(b*(diff(G(xi), xi))+2*l*G(xi)*(diff(G(xi), xi))))/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(5)

Dubl2 := simplify(diff(diff(G(xi), xi), xi) = (1/2)*(2*r^2*G(xi)*(a+b*G(xi)+l*G(xi)^2)*(diff(G(xi), xi))+r^2*G(xi)^2*(b*(diff(G(xi), xi))+2*l*G(xi)*(diff(G(xi), xi))))/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2))

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(6)

subs(SA, Dubl2)

diff((r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2), xi) = (1/2)*r^2*G(xi)*(4*l*G(xi)^2+3*b*G(xi)+2*a)

(7)

subs(Se, Dubl2)

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(8)

subs(lhs(Se) = rhs(Se), Dubl2)

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(9)
 

NULL

Download subs.mw

Someone please help me with the computation of the right and left eigenvectors. my system of equation is attached below

with(VectorCalculus):

 

interface(imaginaryunit = I)

I

(2)

I

I

(3)

sqrt(-4)

2*I

(4)

NULL

``

Limit(N(t) = N__0*exp(-mu*t)+exp(mu*t)*K/mu, t = infinity)

 

limit(N(t), t = infinity) = limit(N__0*exp(-mu*t)+exp(mu*t)*K/mu, t = infinity)

(5)

 

NULL

#to calculate the  disease free equilibrium,

NULL

E1 := -S*µ__C+`&Lambda;__p`

-S*µ__C+Lambda__p

(6)

NULL

``

(7)

E3 := -S__A*µ__A+`&Lambda;__A`

-S__A*µ__A+Lambda__A

(8)

NULL

``

(9)

NULL

``

(10)

NULL

solve({E1 = 0, E3 = 0}, {S, S__A})

{S = Lambda__p/µ__C, S__A = Lambda__A/µ__A}

(11)

NULL

NULL#to calculate the Endemic Equilibrium state,

Typesetting:-mparsed()

(12)

restart

with(VectorCalculus):

 

interface(imaginaryunit = I)

I

(14)

I

I

(15)

sqrt(-4)

2*I

(16)

``

E1 := `&Lambda;__p`-(`&varphi;`*`&theta;__B`*I__A/N__p+µ__C)*S+`&omega;__B`*I__B

Lambda__p-(varphi*theta__B*I__A/N__p+µ__C)*S+omega__B*I__B

(17)

E2 := `&varphi;`*`&theta;__B`*I__A*S/N__p-`&omega;__B`*I__B-(`&sigma;__B`+µ__C)*I__B

varphi*theta__B*I__A*S/N__p-omega__B*I__B-(sigma__B+µ__C)*I__B

(18)

``

(19)

E3 := `&Lambda;__A`-(µ__A+`&varphi;`*`&alpha;__B`*I__B/N__p)*S__A+`&delta;__A`*I__A

Lambda__A-(µ__A+varphi*alpha__B*I__B/N__p)*S__A+delta__A*I__A

(20)

E4 := `&varphi;`*`&alpha;__B`*I__B*S__A/N__p-(µ__A+`&delta;__A`)*I__A

varphi*alpha__B*I__B*S__A/N__p-(µ__A+delta__A)*I__A

(21)

NULL

``

(22)

NULL

``

(23)

solve({E1 = 0, E2 = 0, E3 = 0, E4 = 0}, {I__A, I__B, S, S__A})

{I__A = 0, I__B = 0, S = Lambda__p/µ__C, S__A = Lambda__A/µ__A}, {I__A = -(N__p^2*µ__A^2*µ__C^2+N__p^2*µ__A^2*µ__C*omega__B+N__p^2*µ__A^2*µ__C*sigma__B+N__p^2*µ__A*µ__C^2*delta__A+N__p^2*µ__A*µ__C*delta__A*omega__B+N__p^2*µ__A*µ__C*delta__A*sigma__B-varphi^2*Lambda__A*Lambda__p*alpha__B*theta__B)/(varphi*µ__A*theta__B*(N__p*µ__A*µ__C+N__p*µ__A*sigma__B+N__p*µ__C*delta__A+N__p*delta__A*sigma__B+varphi*Lambda__p*alpha__B)), I__B = -(N__p^2*µ__A^2*µ__C^2+N__p^2*µ__A^2*µ__C*omega__B+N__p^2*µ__A^2*µ__C*sigma__B+N__p^2*µ__A*µ__C^2*delta__A+N__p^2*µ__A*µ__C*delta__A*omega__B+N__p^2*µ__A*µ__C*delta__A*sigma__B-varphi^2*Lambda__A*Lambda__p*alpha__B*theta__B)/(alpha__B*(N__p*µ__A*µ__C^2+N__p*µ__A*µ__C*omega__B+N__p*µ__A*µ__C*sigma__B+varphi*µ__C*Lambda__A*theta__B+varphi*Lambda__A*sigma__B*theta__B)*varphi), S = (N__p*µ__A*µ__C+N__p*µ__A*sigma__B+N__p*µ__C*delta__A+N__p*delta__A*sigma__B+varphi*Lambda__p*alpha__B)*µ__A*N__p*(µ__C+omega__B+sigma__B)/(alpha__B*varphi*(N__p*µ__A*µ__C^2+N__p*µ__A*µ__C*omega__B+N__p*µ__A*µ__C*sigma__B+varphi*µ__C*Lambda__A*theta__B+varphi*Lambda__A*sigma__B*theta__B)), S__A = N__p*(N__p*µ__A^2*µ__C^2+N__p*µ__A^2*µ__C*omega__B+N__p*µ__A^2*µ__C*sigma__B+N__p*µ__A*µ__C^2*delta__A+N__p*µ__A*µ__C*delta__A*omega__B+N__p*µ__A*µ__C*delta__A*sigma__B+varphi*µ__A*µ__C*Lambda__A*theta__B+varphi*µ__A*Lambda__A*sigma__B*theta__B+varphi*µ__C*Lambda__A*delta__A*theta__B+varphi*Lambda__A*delta__A*sigma__B*theta__B)/(varphi*µ__A*theta__B*(N__p*µ__A*µ__C+N__p*µ__A*sigma__B+N__p*µ__C*delta__A+N__p*delta__A*sigma__B+varphi*Lambda__p*alpha__B))}

(24)

``

J := Jacobian([E1, E2, E3, E4], [S, I__B, S__A, I__A])

Matrix(%id = 18446746854857131062)

(25)

NULL

restart

J := Matrix(4, 4, {(1, 1) = -`&varphi;`*`&theta;__B`*I__A/N__p-µ__C, (1, 2) = `&omega;__B`, (1, 3) = 0, (1, 4) = -`&varphi;`*`&theta;__B`*S/N__p, (2, 1) = `&varphi;`*`&theta;__B`*I__A/N__p, (2, 2) = -`&omega;__B`-`&sigma;__B`-µ__C, (2, 3) = 0, (2, 4) = `&varphi;`*`&theta;__B`*S/N__p, (3, 1) = 0, (3, 2) = -`&varphi;`*`&alpha;__B`*S__A/N__p, (3, 3) = -µ__A-`&varphi;`*`&alpha;__B`*I__B/N__p, (3, 4) = `&delta;__A`, (4, 1) = 0, (4, 2) = `&varphi;`*`&alpha;__B`*S__A/N__p, (4, 3) = `&varphi;`*`&alpha;__B`*I__B/N__p, (4, 4) = -µ__A-`&delta;__A`})

Matrix(%id = 18446746579340105118)

(26)

S := `&Lambda;__p`/µ__C

Lambda__p/µ__C

(27)

S__A := `&Lambda;__A`/µ__A

Lambda__A/µ__A

(28)

I__B := 0

0

(29)

I__A := 0

0

(30)

NULL

0

(31)

J := Matrix(4, 4, {(1, 1) = -`&varphi;`*`&theta;__B`*I__A/N__p-µ__C, (1, 2) = `&omega;__B`, (1, 3) = 0, (1, 4) = -`&varphi;`*`&theta;__B`*S/N__p, (2, 1) = `&varphi;`*`&theta;__B`*I__A/N__p, (2, 2) = -`&omega;__B`-`&sigma;__B`-µ__C, (2, 3) = 0, (2, 4) = `&varphi;`*`&theta;__B`*S/N__p, (3, 1) = 0, (3, 2) = -`&varphi;`*`&alpha;__B`*S__A/N__p, (3, 3) = -µ__A-`&varphi;`*`&alpha;__B`*I__B/N__p, (3, 4) = `&delta;__A`, (4, 1) = 0, (4, 2) = `&varphi;`*`&alpha;__B`*S__A/N__p, (4, 3) = `&varphi;`*`&alpha;__B`*I__B/N__p, (4, 4) = -µ__A-`&delta;__A`})

Matrix(%id = 18446746579340107518)

(32)

J := Matrix(4, 4, {(1, 1) = -µ__C, (1, 2) = `&omega;__B`, (1, 3) = 0, (1, 4) = -`&beta;__1`, (2, 1) = 0, (2, 2) = -`&omega;__B`-`&sigma;__B`-µ__C, (2, 3) = 0, (2, 4) = -`&beta;__1`, (3, 1) = 0, (3, 2) = -`&beta;__2`, (3, 3) = -µ__A, (3, 4) = `&delta;__A`, (4, 1) = 0, (4, 2) = `&beta;__2`, (4, 3) = 0, (4, 4) = -µ__A-`&delta;__A`})

Matrix(%id = 18446746579417403630)

(33)

"simplify( ? )"

Matrix(%id = 18446746579305905318)

(34)

"LinearAlgebra:-Eigenvalues( ? )"

Vector[column](%id = 18446746579445964182)

(35)

"LinearAlgebra:-CharacteristicPolynomial( ?, lambda )"

lambda^4+(2*µ__A+delta__A+omega__B+sigma__B+2*µ__C)*lambda^3+(beta__1*beta__2+µ__A^2+4*µ__A*µ__C+µ__A*delta__A+2*µ__A*omega__B+2*µ__A*sigma__B+µ__C^2+2*µ__C*delta__A+µ__C*omega__B+µ__C*sigma__B+delta__A*omega__B+delta__A*sigma__B)*lambda^2+(beta__1*beta__2*µ__A+beta__1*beta__2*µ__C+2*µ__A^2*µ__C+µ__A^2*omega__B+µ__A^2*sigma__B+2*µ__A*µ__C^2+2*µ__A*µ__C*delta__A+2*µ__A*µ__C*omega__B+2*µ__A*µ__C*sigma__B+µ__A*delta__A*omega__B+µ__A*delta__A*sigma__B+µ__C^2*delta__A+µ__C*delta__A*omega__B+µ__C*delta__A*sigma__B)*lambda+beta__1*beta__2*µ__A*µ__C+µ__A^2*µ__C^2+µ__A^2*µ__C*omega__B+µ__A^2*µ__C*sigma__B+µ__A*µ__C^2*delta__A+µ__A*µ__C*delta__A*omega__B+µ__A*µ__C*delta__A*sigma__B

(36)

NULL

"(->)"

Vector[column](%id = 18446746579340117046)

(37)

# to find the trace we

 

Matrix(7, 7, {(1, 1) = -beta*lambda-v__1-µ, (1, 2) = v__2, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (2, 1) = v__1, (2, 2) = beta*(w-1)*lambda-µ-v__2-alpha, (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (3, 1) = 0, (3, 2) = alpha, (3, 3) = -µ, (3, 4) = 0, (3, 5) = `&rho;__A`, (3, 6) = `&rho;__F`, (3, 7) = -(-1+k)*`&rho;__Q`, (4, 1) = beta*lambda, (4, 2) = -beta*(w-1)*lambda, (4, 3) = 0, (4, 4) = -q__E-delta-µ, (4, 5) = 0, (4, 6) = 0, (4, 7) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = a*delta, (5, 5) = -`&rho;__A`-q__A-µ, (5, 6) = 0, (5, 7) = k*`&rho;__Q`, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = -delta*(-1+a), (6, 5) = 0, (6, 6) = -`&rho;__F`-q__F-`&delta;__F`-µ, (6, 7) = 0, (7, 1) = 0, (7, 2) = 0, (7, 3) = 0, (7, 4) = q__E, (7, 5) = q__A, (7, 6) = q__F, (7, 7) = -`&rho;__Q`-`&delta;__Q`-µ})

Matrix(%id = 36893490965935089652)

(38)

"(->)"

-beta*lambda-v__1-7*µ+beta*(w-1)*lambda-v__2-alpha-q__E-delta-rho__A-q__A-rho__F-q__F-delta__F-rho__Q-delta__Q

(39)

 

#this shows that trace is negative

 

#to Achieve stability, the value below must be less than zero

 

(-q__E-delta-µ)*(-`&rho;__F`-q__F-`&delta;__F`-µ)*(-k*q__A*`&rho;__Q`+q__A*µ+q__A*`&delta;__Q`+q__A*`&rho;__Q`+µ^2+µ*`&delta;__Q`+µ*`&rho;__A`+µ*`&rho;__Q`+`&delta;__Q`*`&rho;__A`+`&rho;__A`*`&rho;__Q`)*µ < 0

(-q__E-delta-µ)*(-rho__F-q__F-delta__F-µ)*(-k*q__A*rho__Q+q__A*rho__Q+q__A*µ+q__A*delta__Q+rho__A*rho__Q+rho__A*µ+rho__A*delta__Q+rho__Q*µ+µ^2+µ*delta__Q)*µ < 0

(40)

 NULL

M := diff(N(t), t) = Pi-µ*N(t)

diff(N(t), t) = Pi-µ*N(t)

(41)

dsolve({M}, N(t))

{N(t) = Pi/µ+exp(-µ*t)*_C1}

(42)

eval({N(t) = Pi/µ+exp(-µ*t)*_C1}, [t = infinity])

{N(infinity) = Pi/µ+exp(-µ*infinity)*_C1}

(43)

value(%)

{N(infinity) = Pi/µ+exp(-µ*infinity)*_C1}

(44)

Limit(N(t) = Pi/µ+exp(-µ*t)*_C1, t = infinity); value(%)

Limit(N(t) = Pi/µ+exp(-µ*t)*_C1, t = infinity)

 

limit(N(t), t = infinity) = limit(Pi/µ+exp(-µ*t)*_C1, t = infinity)

(45)

 

Subs := diff(S(t), t) = -(beta*lambda+v__1+µ)*S(t)

diff(S(t), t) = -(beta*lambda+v__1+µ)*S(t)

(46)

dsolve({Subs}, S(t))

{S(t) = _C1*exp(-(beta*lambda+v__1+µ)*t)}

(47)
 

``

Download Cotton_DFE_and_Jacobian.mw

I tried solving this ODE, but my result is very different from the expected one. How can I correctly obtain the solution? Also, is there a way to include both the positive and negative signs (±) in the equation so that the final result reflects both possibilities?

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

``

ode := f*g^3*(diff(diff(U(xi), xi), xi))-4*f*p*U(xi)-6*k*l*U(xi)-f^3*g*(diff(diff(U(xi), xi), xi))+6*f*g*U(xi)^2 = 0

f*g^3*(diff(diff(U(xi), xi), xi))-4*f*p*U(xi)-6*k*l*U(xi)-f^3*g*(diff(diff(U(xi), xi), xi))+6*f*g*U(xi)^2 = 0

(3)

S := (diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(4)

S1 := dsolve(S, G(xi))

G(xi) = (1/2)*(-b+(-4*a*l+b^2)^(1/2))/l, G(xi) = -(1/2)*(b+(-4*a*l+b^2)^(1/2))/l, G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2)), G(xi) = -4*a*exp(xi*r*a^(1/2))/(exp(c__1*r*a^(1/2))*(4*a*l-b^2+2*b*exp(xi*r*a^(1/2))/exp(c__1*r*a^(1/2))-(exp(xi*r*a^(1/2)))^2/(exp(c__1*r*a^(1/2)))^2))

(5)

S2 := S1[3]

G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2))

(6)

normal(G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2)), ':-expanded')

G(xi) = 4*a*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))/(-4*a*l*(exp(xi*r*a^(1/2)))^2+b^2*(exp(xi*r*a^(1/2)))^2-2*b*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))+(exp(c__1*r*a^(1/2)))^2)

(7)

simplify(G(xi) = 4*a*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))/(-4*a*l*(exp(xi*r*a^(1/2)))^2+b^2*(exp(xi*r*a^(1/2)))^2-2*b*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))+(exp(c__1*r*a^(1/2)))^2))

G(xi) = -4*a*exp(a^(1/2)*r*(c__1+xi))/(4*a*l*exp(2*xi*r*a^(1/2))-b^2*exp(2*xi*r*a^(1/2))+2*b*exp(a^(1/2)*r*(c__1+xi))-exp(2*c__1*r*a^(1/2)))

(8)

convert(%, trig)

G(xi) = -4*a*(cosh(a^(1/2)*r*(c__1+xi))+sinh(a^(1/2)*r*(c__1+xi)))/(4*a*l*(cosh(2*xi*r*a^(1/2))+sinh(2*xi*r*a^(1/2)))-b^2*(cosh(2*xi*r*a^(1/2))+sinh(2*xi*r*a^(1/2)))+2*b*(cosh(a^(1/2)*r*(c__1+xi))+sinh(a^(1/2)*r*(c__1+xi)))-cosh(2*c__1*r*a^(1/2))-sinh(2*c__1*r*a^(1/2)))

(9)

convert(S1[3], trig)

G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/((cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))*(4*a*l-b^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))^2))

(10)

simplify(G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/((cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))*(4*a*l-b^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))^2)))

G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))*(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))/((4*a*l-b^2)*cosh(xi*r*a^(1/2))^2+((8*a*l-2*b^2)*sinh(xi*r*a^(1/2))+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2))))*cosh(xi*r*a^(1/2))+(4*a*l-b^2)*sinh(xi*r*a^(1/2))^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))*sinh(xi*r*a^(1/2))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2)

(11)
   

Download tt.mw

I need to create a slider plot for A10, A11, and A12 by varying the parameters theta, Pu, and a.
I have a syntax ready — could you suggest modifications to make it work correctly and generate the plot?

Additionally, is it possible to compute the values of A13 and A14 by substituting the obtained A10, A11, and A12 values for each combination of theta, Pu, and a from the slider plot?

Sheet attached: Slider_Q.mw

The series to ode using 'series' option (if it exists) should always be series(...), i.e. with big O at end. but sometimes Maple forgets to add this. Here is an example

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1862 and is the same as the version installed in this computer, created 2025, April 25, 10:33 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 15 and is the same as the version installed in this computer, created April 27, 2025, 23:18 hours Eastern Time.`

restart;

ode:=diff(y(x),x)+y(x)=1+x;
IC:=y(0)=0;
sol:=dsolve([ode,IC],y(x),'series')

diff(y(x), x)+y(x) = 1+x

y(0) = 0

y(x) = x

lprint(sol); # notice solution is not series, it should be

y(x) = x

#above solution should be
y(x) = series(x+O(x^6),x,6)

y(x) = series(x+O(x^6),x,6)

#this example below is correct
ode:=diff(y(x),x)+y(x)=1+x;
IC:=y(0)=1;
sol:=dsolve([ode,IC],y(x),'series')

diff(y(x), x)+y(x) = 1+x

y(0) = 1

y(x) = series(1+(1/2)*x^2-(1/6)*x^3+(1/24)*x^4-(1/120)*x^5+O(x^6),x,6)

lprint(sol); #solution is series

y(x) = series(1+1/2*x^2-1/6*x^3+1/24*x^4-1/120*x^5+O(x^6),x,6)

 

 

Download bug_report_dsolve_series_april_28_2025.mw

Hello everyone,

I am creating this post to begin a thread where I will share a series of worksheets on important topics in Complex Analysis, written as part of my notes for my classes. Complex_Analysis_Notes.pdf

The planned sections include:

  • Section 1: Infinite Series

  • Section 2: Power Series

  • Section 3: The Radius of Convergence of a Power Series

  • Section 4: The Riemann Zeta Function and the Riemann Hypothesis

  • Section 5: The Prime Number Theorem

Each worksheet will include calculations, plots, and examples using Maple to illustrate key ideas.

I plan to upload one worksheet every week to keep a steady pace and allow time for discussion and feedback between posts.

I hope this thread will be helpful both for learning and for deeper exploration.
Feel free to comment, suggest improvements, or ask questions as I post the materials.

Thank you!

restart; interface(imaginaryunit = 'I'); z := I*(1/3); S_N := proc (n) options operator, arrow; sum(z^k, k = 0 .. n) end proc; limit(S_N(n), n = infinity); S_N(10); S_N(100); S_N(1000); with(plots); points := [seq([Re(evalf(S_N(n))), Im(evalf(S_N(n)))], n = 0 .. 50)]; pointplot(points, connect = true, symbol = solidcircle, symbolsize = 10, color = blue, labels = ["Re", "Im"])

proc (n) options operator, arrow; sum(z^k, k = 0 .. n) end proc

 

9/10+(3/10)*I

 

53144/59049+(5905/19683)*I

 

 

restart; interface(imaginaryunit = 'I'); z := I*(1/2); S_N := proc (n) options operator, arrow; sum(z^k, k = 0 .. n) end proc; limit(S_N(n), n = infinity); S_N(10); S_N(100); S_N(1000); with(plots); points := [seq([Re(evalf(S_N(n))), Im(evalf(S_N(n)))], n = 0 .. 50)]; pointplot(points, connect = true, symbol = solidcircle, symbolsize = 10, color = blue, labels = ["Re", "Im"])

proc (n) options operator, arrow; sum(z^k, k = 0 .. n) end proc

 

4/5+(2/5)*I

 

819/1024+(205/512)*I

 

 

NULL

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum(((1/2)*I)^n, n = 0 .. N) end proc; fullsum := sum(((1/2)*I)^n, n = 0 .. infinity); realpts := [seq([n, Re(S(n))], n = 0 .. 30)]; imagpts := [seq([n, Im(S(n))], n = 0 .. 30)]; limit(Re(S(n)), n = infinity); limit(Im(S(n)), n = infinity); horiz_reallimit := plot(4/5, k = 0 .. 30, color = black, linestyle = 2, thickness = 2); horiz_imaglimit := plot(2/5, k = 0 .. 30, color = black, linestyle = 2, thickness = 2); plots[display]([pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Value"], legend = "Real Part"), pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Value"], legend = "Imaginary Part"), horiz_reallimit, horiz_imaglimit], axes = boxed, labels = ["n", "Partial Sum Value"])

4/5+(2/5)*I

 

4/5

 

2/5

 

 

restart; with(plots); interface(imaginaryunit = 'I'); H := proc (N) local n; sum(1/n, n = 1 .. N) end proc; limit(H(n), n = infinity); limit(Re(H(n)), n = infinity); limit(Im(H(n)), n = infinity); harmonic_pts := [seq([n, H(n)], n = 1 .. 100)]; harmonic_plot := pointplot(harmonic_pts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], axes = boxed)

infinity

 

infinity

 

0

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum(I^k/k, k = 1 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 1 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 1 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 1 .. 100)]; S_infinite := sum(I^k/k, k = 1 .. infinity); Re(S_infinite); Im(S_infinite); horiz_reallimit := plot(-(1/2)*ln(2), k = 0 .. 100, color = black, linestyle = 2, thickness = 2); horiz_imaglimit := plot((1/4)*Pi, k = 0 .. 100, color = black, linestyle = 2, thickness = 2); real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], axes = boxed, legend = "Real Part"); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum Value"], axes = boxed, legend = "Imaginary Part"); plots[display]([real_plot, horiz_reallimit, imag_plot, horiz_imaglimit]); plots[pointplot](complex_pts, symbol = solidcircle, style = pointline, color = blue, axes = boxed, labels = ["Re", "Im"])

-(1/2)*ln(2)+((1/4)*I)*Pi

 

-(1/2)*ln(2)

 

(1/4)*Pi

 

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum((-(2/3)*I)^n, n = 0 .. N) end proc; fullsum := sum((-2*I*(1/3))^n, n = 0 .. infinity); realpts := [seq([n, Re(S(n))], n = 0 .. 30)]; imagpts := [seq([n, Im(S(n))], n = 0 .. 30)]; limit(Re(S(n)), n = infinity); limit(Im(S(n)), n = infinity); horiz_reallimit := plot(9/13, k = 0 .. 30, color = black, linestyle = 2, thickness = 2); horiz_imaglimit := plot(-6/13, k = 0 .. 30, color = black, linestyle = 2, thickness = 2); plots[display]([pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Value"], legend = "Real Part"), pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Value"], legend = "Imaginary Part"), horiz_reallimit, horiz_imaglimit], axes = boxed, labels = ["n", "Partial Sum Value"])

9/13-(6/13)*I

 

9/13

 

-6/13

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum((I*Pi)^n, n = 0 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 0 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 0 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 0 .. 100)]; limit(S(N), N = infinity); limit(Re(S(n)), n = infinity); limit(Im(S(n)), n = infinity); real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum (Real Part)"], title = "Real Part of Partial Sums of (Pi i)^n", axes = boxed); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum (Imaginary Part)"], title = "Imaginary Part of Partial Sums of (Pi i)^n", axes = boxed); complex_plot := pointplot(complex_pts, symbol = solidcircle, style = pointline, color = blue, labels = ["Re", "Im"], title = "Partial Sums in Complex Plane (Pi i)^n", axes = boxed)

undefined

 

undefined

 

undefined

 

 

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum(2*I^k/k, k = 1 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 1 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 1 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 1 .. 100)]; S_infinite := sum(2*I^k/k, k = 1 .. infinity); Re(S_infinite); Im(S_infinite); horiz_reallimit := plot(-ln(2), k = 0 .. 100, color = black, linestyle = 2, thickness = 2); horiz_imaglimit := plot((1/2)*Pi, k = 0 .. 100, color = black, linestyle = 2, thickness = 2); real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], axes = boxed, legend = "Real Part"); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum Value"], axes = boxed, legend = "Imaginary Part"); plots[display]([real_plot, horiz_reallimit, imag_plot, horiz_imaglimit]); plots[pointplot](complex_pts, symbol = solidcircle, style = pointline, color = blue, axes = boxed, labels = ["Re", "Im"])

-ln(2)+((1/2)*I)*Pi

 

-ln(2)

 

(1/2)*Pi

 

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; add(exp(Pi*I*n)/n, n = 1 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 1 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 1 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 1 .. 100)]; S_infinite := sum(exp(Pi*I*n)/n, n = 1 .. infinity); limit_Re := Re(S_infinite); limit_Im := Im(S_infinite); limit_Re; limit_Im; real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], title = "Real Part of Partial Sums", axes = boxed); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum Value"], title = "Imaginary Part of Partial Sums", axes = boxed); complex_plot := pointplot(complex_pts, symbol = solidcircle, style = pointline, color = blue, labels = ["Re", "Im"], title = "Partial Sums in Complex Plane", axes = boxed); plots[display]([real_plot, imag_plot]); plots[display](complex_plot)

-ln(2)

 

-ln(2)

 

0

 

-ln(2)

 

0

 

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; add(exp(2*Pi*I*n), n = 0 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 0 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 0 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 0 .. 100)]; S_infinite := sum(exp(2*Pi*I*n), n = 1 .. infinity); limit_Re := Re(S_infinite); limit_Im := Im(S_infinite); real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], title = "Real Part of Partial Sums", axes = boxed); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum Value"], title = "Imaginary Part of Partial Sums", axes = boxed); complex_plot := pointplot(complex_pts, symbol = solidcircle, style = pointline, color = blue, labels = ["Re", "Im"], title = "Partial Sums in Complex Plane", axes = boxed); plots[display]([real_plot, imag_plot]); plots[display](complex_plot)

infinity

 

infinity

 

0

 

 

 
 

``

Download infinite_series.mw

In this work, I do not intend to expand all the variables across the monomials. Instead, I want to restrict the distribution to only the variables x,y,z,tx, y, z, tx,y,z,t, possibly raising them to appropriate powers as needed, until I obtain the desired solution and satisfy the conditions of my PDE tests. However, I am uncertain whether "monomial" is the correct term to use here.

S1.mw

trail-1.mw

These two expressions are the same, just pulled minus sign out

But look what happens when integrating them. the anti derivative of one is much more complicated than the other and contains complex numbers and logs. And no matter what I tried, I could not convert the complicated one to look same as the simpler result. Also could not verify the complicated one by back differentiating.

integrand_1:=x^2*(-arctan(x) + x)*exp(-arctan(x) + x)/(x^2 + 1);

x^2*(-arctan(x)+x)*exp(-arctan(x)+x)/(x^2+1)

integrand_2:=evala(integrand_1);

-x^2*(arctan(x)-x)*exp(-arctan(x)+x)/(x^2+1)

simplify(integrand_1 - integrand_2)

0

anti_1:=int(integrand_1,x);

(-arctan(x)+x)*exp(-arctan(x)+x)-exp(-arctan(x)+x)

anti_2:=int(integrand_2,x);

-(1-x+((1/2)*I)*ln(1-I*x)-((1/2)*I)*ln(1+x*I))*(1-I*x)^(-(1/2)*I)*(1+x*I)^((1/2)*I)*exp(x)

simplify(diff(anti_1,x)-integrand_1);

0

simplify(diff(anti_2,x)-integrand_2);

Error, (in simpl/simpl/ReIm/sum) too many levels of recursion

simplify(anti_1 - anti_2)

Error, (in simpl/simpl/ReIm/sum) too many levels of recursion

simplify(anti_2);

(1/2)*(I*ln(1+x*I)-I*ln(1-I*x)+2*x-2)*(1-I*x)^(-(1/2)*I)*(1+x*I)^((1/2)*I)*exp(x)

simplify(anti_2,ln);

(1/2)*(I*ln(1+x*I)-I*ln(1-I*x)+2*x-2)*(1-I*x)^(-(1/2)*I)*(1+x*I)^((1/2)*I)*exp(x)

 

 

Download int_strange_result_april_27_2025.mw

I would have expected same anti derivative to show.  To check, I used another software, and that one gave same anti-derivative for both integrands.

The questions I have: Why Maple gives such different result for same integrand? And how could one convert the one with the logs and complex numbers to the first one?

Maple 2025

Dear all 
I have a double integral, i want to compute this integral and verify if the pproposed solution verify the proposed equation or not. 
I can modify the right hand side of my equation or the exact solution, so that my equation has an exact solution with simple form of right hand side. 

exact_solution.mw

Thank you for your help 

 I am writing notes on complex analysis, I need to use figures of contour paths to integrate on them, i want to create something like this

I tried to plot the contour for 
\oint_{|z|=2} \frac{1}{z^2+1}\,dz
I need to have connecting lines all around because the poles can not be isolated

with(plots); circle1 := plot([2*cos(t), 2*sin(t), t = 0 .. 2*Pi], color = blue, thickness = 2); circle2 := plot([(1/2)*cos(t), 1+(1/2)*sin(t), t = 0 .. 2*Pi], color = "Green", thickness = 2); circle3 := plot([(1/2)*cos(t), -1+(1/2)*sin(t), t = 0 .. 2*Pi], color = "Red", thickness = 2); sing1 := plottools[disk]([0, 1], 0.2e-1, color = white); sing2 := plottools[disk]([0, -1], 0.2e-1, color = white); label1 := textplot([.1, 1.1, "z = i"], font = [Arial, Bold, 12]); label2 := textplot([.1, -1.1, "z = -i"], font = [Arial, Bold, 12])

display(circle1, circle2, circle3, sing1, sing2, label1, label2, scaling = constrained, labels = ["Re", "Im"])

 
 

restart; f := proc (z) options operator, arrow; 1/(z^2+1) end proc; z := 2*exp(I*t); dz := diff(z, t); integrand := f(z)*dz; simplify(integrand); value(Int(integrand, t = 0 .. 2*Pi))

0

(1)

Download CIF.mw

Hello all,

After updating the Physics package I have this error :

Physics:-Version();
The "Physics Updates" version "1862" is installed in the

   directory C:\Users\jm\maple\toolbox\2025\Physics Updates but

   is not active. The active version of Physics is within the

   library C:/Users/jm/maple/toolbox/2025/Physics Updates/lib\Ph\

  ysics Updates.maple.

What am I supposed to do next?

Thanks a lot and kind regards to all,

Jean-Michel

FYI;

 

You might have to try the command more than one time to see the above crash. Here is the worksheet

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1862 and is the same as the version installed in this computer, created 2025, April 25, 10:33 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 13 and is the same as the version installed in this computer, created April 22, 2025, 15:14 hours Eastern Time.`

restart;

ode:=x^2-2*x*y(x)+5*y(x)^2 = (x^2+2*x*y(x)+y(x)^2)*diff(y(x),x);

x^2-2*x*y(x)+5*y(x)^2 = (x^2+2*x*y(x)+y(x)^2)*(diff(y(x), x))

sol:=y(x) = (-1/2*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))^2+3*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))-6+2*(exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))^2-6*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))+9)^(1/2))/(1/2*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))^2-3*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6)))*x:

odetest(sol,ode);

 

Download crash_maple_2025_april_27_2025.mw

Hopefully a fix could be found for this.

When generating a file to update parts of maple (for example constants) is it best to put it in an initialization file or make a library archive .mla?

First 10 11 12 13 14 15 16 Last Page 12 of 2211