Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hello,
the following command

collect(c4*dnub*kpbr*ksr*nur*nurdel + c4*dnur*kpbr*ksr*nub*nurdel, [nur, nub, dnur, dnub, nurdel, nubdel, dnurdel, dnubdel, c4], distributed)

returns

c4*dnub*kpbr*ksr*nur*nurdel + c4*dnur*kpbr*ksr*nub*nurdel

However, I am expecting it to return

c4*kpbr*ksr*(dnub*nur*nurdel+dnur*nub*nurdel)

Where is the error?
Thanks in advance

Hello,

Lets say I have an expression

f:=(a+b)*x1+(a^2+b^2)*(x1+x2^2)+c*(x2-x3)*a*b

and I have a list

p:=[a+b,a^2+b^2,c*b*a].

How can I get the coefficients of the element from p in f, ie,

cof=[x1,x1+x2^2, x2-x3].

such that cof[i] corresponds to p[i]?

Thanks in advance for your suggestions.


How do I remove these unwanted trailing zeros from my plot ? I have tried setting striptrailing=true from the Tyesetting package but no difference. Thanks

 

how can i extract solution for each GB to excel file


 

Eq1 := diff(f(x), `$`(x, 3))+2*GB*a*alpha*f(x) = 0; Eq2 := f(0) = 1, (D(f))(0) = 0, f(1) = 0

f(0) = 1, (D(f))(0) = 0, f(1) = 0

(1)

Eq3 := {Eq1, Eq2}

{diff(diff(diff(f(x), x), x), x)+2*GB*a*alpha*f(x) = 0, f(0) = 1, f(1) = 0, (D(f))(0) = 0}

(2)

Hlist := [0, 5, 6, 10]; params := {a = 7, alpha = 2}

{a = 7, alpha = 2}

(3)

for k to 4 do R := Hlist[k]; Sol_f[H] := dsolve(eval(Eq3, `union`(params, {GB = R})), numeric) end do

proc (x_bvp) local res, data, solnproc, _ndsol, outpoint, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](x_bvp) else outpoint := evalf(x_bvp) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(78, {(1) = .0, (2) = 0.7422014940098305e-2, (3) = 0.15247037874053848e-1, (4) = 0.23520755103823496e-1, (5) = 0.3229677454019059e-1, (6) = 0.4163972613012182e-1, (7) = 0.5163047433585985e-1, (8) = 0.6236471548371652e-1, (9) = 0.7395995268651741e-1, (10) = 0.865635409488798e-1, (11) = .10037386494155838, (12) = .11564679222653715, (13) = .13272336112005387, (14) = .1520729596986236, (15) = .1744030835655522, (16) = .20081719187277686, (17) = .23287978474503113, (18) = .2696382833116828, (19) = .30942370514871853, (20) = .35052688440207136, (21) = .39189960663752765, (22) = .43045939689378565, (23) = .46406520016444347, (24) = .4926053926873776, (25) = .5167851003350923, (26) = .5376216024209438, (27) = .5559231840204688, (28) = .5722936854718627, (29) = .5871581085615549, (30) = .6008206508251621, (31) = .613507361562576, (32) = .6253918899303244, (33) = .6366076943924017, (34) = .6472594108447342, (35) = .6574286185464324, (36) = .667182426192274, (37) = .6765759166669013, (38) = .6856560419917522, (39) = .694464489935754, (40) = .7030331909945008, (41) = .7113893933075516, (42) = .7195587800827726, (43) = .7275642453721933, (44) = .7354262387990891, (45) = .7431631740698084, (46) = .7507921727962193, (47) = .7583272647542358, (48) = .7657828547984458, (49) = .7731719918385156, (50) = .7805069149512255, (51) = .787800042336253, (52) = .7950633754902232, (53) = .802308883829374, (54) = .8095471292208104, (55) = .816788620070316, (56) = .8240445807266021, (57) = .8313260771552303, (58) = .8386433234849713, (59) = .8460074049212739, (60) = .8534299380344416, (61) = .8609213167489855, (62) = .8684912825541682, (63) = .8761497779391109, (64) = .8839064180293265, (65) = .8917702742321805, (66) = .8997477423309259, (67) = .9078436543374889, (68) = .9160613937315915, (69) = .9244024655177719, (70) = .9328635823555885, (71) = .9414402432317543, (72) = .9501252904326655, (73) = .9589057176767743, (74) = .9677706161338872, (75) = .9764838806404585, (76) = .9847529627091501, (77) = .9925779854438055, (78) = 1.0}, datatype = float[8], order = C_order); Y := Matrix(78, 3, {(1, 1) = 1.0, (1, 2) = .0, (1, 3) = 38.386176015354714, (2, 1) = 1.0010381945843554, (2, 2) = .2771893448193658, (2, 3) = 36.30728934760168, (3, 1) = 1.0042963757113128, (3, 2) = .55270571236988, (3, 3) = 34.110832525099134, (4, 1) = 1.0100102471873285, (4, 2) = .8252878570049964, (4, 3) = 31.778055437429416, (5, 1) = 1.0184448193935531, (5, 2) = 1.093253963708355, (5, 3) = 29.28629045181688, (6, 1) = 1.0298983861788318, (6, 2) = 1.3543840804437328, (6, 3) = 26.60756232968718, (7, 1) = 1.044709521932798, (7, 2) = 1.605755570899463, (7, 3) = 23.706383861466097, (8, 1) = 1.0632513045490988, (8, 2) = 1.8432767789658882, (8, 3) = 20.53919210009709, (9, 1) = 1.0859275260569894, (9, 2) = 2.061281786793718, (9, 3) = 17.05104269389171, (10, 1) = 1.1131592778616584, (10, 2) = 2.2518387196230063, (10, 3) = 13.171455221803619, (11, 1) = 1.1453761649071785, (11, 2) = 2.4037357375480184, (11, 3) = 8.805376459470997, (12, 1) = 1.1829232618447163, (12, 2) = 2.5004107831489004, (12, 3) = 3.8275101658570896, (13, 1) = 1.2259023831041698, (13, 2) = 2.5168946136272687, (13, 3) = -1.9312040672586204, (14, 1) = 1.273823202340899, (14, 2) = 2.41442292263844, (14, 3) = -8.703714673093767, (15, 1) = 1.32489881040714, (15, 2) = 2.1299191347716695, (15, 3) = -16.831193254948268, (16, 1) = 1.3741361227552364, (16, 2) = 1.55419875396813, (16, 3) = -26.82152738780503, (17, 1) = 1.4080508419131426, (17, 2) = .49443414154220483, (17, 3) = -39.33552182611952, (18, 1) = 1.3963830671356963, (18, 2) = -1.2180825786825746, (18, 3) = -53.82166494495346, (19, 1) = 1.3012694763249404, (19, 2) = -3.663599829854037, (19, 3) = -68.9378273523391, (20, 1) = 1.0883742078812664, (20, 2) = -6.790682032244631, (20, 3) = -82.81223942735504, (21, 1) = .7332094872654484, (21, 2) = -10.452310970196194, (21, 3) = -93.50953969605982, (22, 1) = .25897959052489655, (22, 2) = -14.180229882914377, (22, 3) = -98.99519214944469, (23, 1) = -.2736962891670773, (23, 2) = -17.521396851088035, (23, 3) = -99.01407158290625, (24, 1) = -.8136490124950762, (24, 2) = -20.296295881657187, (24, 3) = -94.7222241169801, (25, 1) = -1.3314780494820997, (25, 2) = -22.506289855361793, (25, 3) = -87.49079585871775, (26, 1) = -1.8188105138896593, (26, 2) = -24.238671480113556, (26, 3) = -78.31861638361846, (27, 1) = -2.274980464806825, (27, 2) = -25.579703152510636, (27, 3) = -67.83990377359022, (28, 1) = -2.7023359694535296, (28, 2) = -26.59962914680849, (28, 3) = -56.43892166690841, (29, 1) = -3.1035298077817575, (29, 2) = -27.350861692718976, (29, 3) = -44.360678454090205, (30, 1) = -3.480971874211851, (30, 2) = -27.872564247073623, (30, 3) = -31.768407619168595, (31, 1) = -3.8367994850784832, (31, 2) = -28.194497966345814, (31, 3) = -18.772234877979404, (32, 1) = -4.1728963854105405, (32, 2) = -28.339516338097162, (32, 3) = -5.445909446947036, (33, 1) = -4.490809409335731, (33, 2) = -28.32524046551249, (33, 3) = 8.15799212324777, (34, 1) = -4.79180151570542, (34, 2) = -28.165414760706334, (34, 3) = 22.00101835188759, (35, 1) = -5.07684520530807, (35, 2) = -27.87092798584902, (35, 3) = 36.05161315989217, (36, 1) = -5.346755175391735, (36, 2) = -27.45046541461933, (36, 3) = 50.2863172936417, (37, 1) = -5.602182989617742, (37, 2) = -26.91099448460295, (37, 3) = 64.68625227277516, (38, 1) = -5.843673697667125, (38, 2) = -26.258035422800074, (38, 3) = 79.23768210215435, (39, 1) = -6.071704048752482, (39, 2) = -25.495766256210366, (39, 3) = 93.93289981377228, (40, 1) = -6.2865413908219105, (40, 2) = -24.62772878811068, (40, 3) = 108.75956231452248, (41, 1) = -6.488365978798334, (41, 2) = -23.65679257680415, (41, 3) = 123.70610360203507, (42, 1) = -6.677333159112298, (42, 2) = -22.58497056483621, (42, 3) = 138.7655689743947, (43, 1) = -6.853528847273043, (43, 2) = -21.41364299686328, (43, 3) = 153.9322389267795, (44, 1) = -7.016969051653059, (44, 2) = -20.143642894855606, (44, 3) = 169.20103738641026, (45, 1) = -7.167602423383424, (45, 2) = -18.77531208673614, (45, 3) = 184.56726411455978, (46, 1) = -7.305318948190193, (46, 2) = -17.308463785577665, (46, 3) = 200.02720191881534, (47, 1) = -7.429914789924158, (47, 2) = -15.742833500440952, (47, 3) = 215.57366381270867, (48, 1) = -7.5411512337736974, (48, 2) = -14.07748834798679, (48, 3) = 231.2023620438113, (49, 1) = -7.6387175183803055, (49, 2) = -12.311201649894752, (49, 3) = 246.90787049883542, (50, 1) = -7.722236201337924, (50, 2) = -10.442397132353205, (50, 3) = 262.6842145190337, (51, 1) = -7.791267758846605, (51, 2) = -8.468923343360544, (51, 3) = 278.52653824235927, (52, 1) = -7.8452938116098725, (52, 2) = -6.388204943712167, (52, 3) = 294.42939738489036, (53, 1) = -7.883711765855054, (53, 2) = -4.197150420318326, (53, 3) = 310.38713103269964, (54, 1) = -7.905821198580051, (54, 2) = -1.892601667252537, (54, 3) = 326.3903402911911, (55, 1) = -7.910828488449073, (55, 2) = .5290144403384773, (55, 3) = 342.4283606903575, (56, 1) = -7.897834733740855, (56, 2) = 3.071950114910132, (56, 3) = 358.4904700009592, (57, 1) = -7.865820550715685, (57, 2) = 5.740854241512291, (57, 3) = 374.5633917646863, (58, 1) = -7.8136422508457315, (58, 2) = 8.540470599699889, (58, 3) = 390.62915821433086, (59, 1) = -7.740012374279895, (59, 2) = 11.476245256966607, (59, 3) = 406.6682461492493, (60, 1) = -7.643479793744403, (60, 2) = 14.554220207210015, (60, 3) = 422.65803020173627, (61, 1) = -7.522439269923206, (61, 2) = 17.780264481034628, (61, 3) = 438.5681647539286, (62, 1) = -7.375125762150111, (62, 2) = 21.160183253505476, (62, 3) = 454.3610522058657, (63, 1) = -7.1995921572266015, (63, 2) = 24.70000314066167, (63, 3) = 469.9927541150128, (64, 1) = -6.993708734091879, (64, 2) = 28.405653224338753, (64, 3) = 485.41088215213205, (65, 1) = -6.75516438589842, (65, 2) = 32.282737127940095, (65, 3) = 500.55315920962886, (66, 1) = -6.48154379932051, (66, 2) = 36.33528116108361, (66, 3) = 515.3425355069513, (67, 1) = -6.170329168881457, (67, 2) = 40.565998727887454, (67, 3) = 529.6889889597641, (68, 1) = -5.818925492294148, (68, 2) = 44.97610249233706, (68, 3) = 543.4893781093477, (69, 1) = -5.42471537565811, (69, 2) = 49.564815551335016, (69, 3) = 556.626589733943, (70, 1) = -4.9852667690195, (70, 2) = 54.327433776793995, (70, 3) = 568.9657561995768, (71, 1) = -4.498249202540579, (71, 2) = 59.25696421609918, (71, 3) = 580.3613834866482, (72, 1) = -3.9615778090146163, (72, 2) = 64.34308239636641, (72, 3) = 590.6566951289624, (73, 1) = -3.3737288363633975, (73, 2) = 69.56998582501373, (73, 3) = 599.6830958927808, (74, 1) = -2.7333299078047895, (74, 2) = 74.9209285737396, (74, 3) = 607.2722920468946, (75, 1) = -2.0573924158706256, (75, 2) = 80.23895127261001, (75, 3) = 613.1257096022034, (76, 1) = -1.372878019405228, (76, 2) = 85.32648255190304, (76, 3) = 617.1049532901717, (77, 1) = -.6862764603683912, (77, 2) = 90.16517673340196, (77, 3) = 619.3676770101681, (78, 1) = .0, (78, 2) = 94.76568300546467, (78, 3) = 620.0866880268571}, datatype = float[8], order = C_order); YP := Matrix(78, 3, {(1, 1) = .0, (1, 2) = 38.386176015354714, (1, 3) = -280.0, (2, 1) = .2771893448193658, (2, 2) = 36.30728934760168, (2, 3) = -280.2906944836195, (3, 1) = .55270571236988, (3, 2) = 34.110832525099134, (3, 3) = -281.2029851991676, (4, 1) = .8252878570049964, (4, 2) = 31.778055437429416, (4, 3) = -282.802869212452, (5, 1) = 1.093253963708355, (5, 2) = 29.28629045181688, (5, 3) = -285.1645494301949, (6, 1) = 1.3543840804437328, (6, 2) = 26.60756232968718, (6, 3) = -288.3715481300729, (7, 1) = 1.605755570899463, (7, 2) = 23.706383861466097, (7, 3) = -292.5186661411834, (8, 1) = 1.8432767789658882, (8, 2) = 20.53919210009709, (8, 3) = -297.71036527374764, (9, 1) = 2.061281786793718, (9, 2) = 17.05104269389171, (9, 3) = -304.059707295957, (10, 1) = 2.2518387196230063, (10, 2) = 13.171455221803619, (10, 3) = -311.6845978012643, (11, 1) = 2.4037357375480184, (11, 2) = 8.805376459470997, (11, 3) = -320.70532617401, (12, 1) = 2.5004107831489004, (12, 2) = 3.8275101658570896, (12, 3) = -331.21851331652056, (13, 1) = 2.5168946136272687, (13, 2) = -1.9312040672586204, (13, 3) = -343.25266726916755, (14, 1) = 2.41442292263844, (14, 2) = -8.703714673093767, (14, 3) = -356.67049665545176, (15, 1) = 2.1299191347716695, (15, 2) = -16.831193254948268, (15, 3) = -370.9716669139992, (16, 1) = 1.55419875396813, (16, 2) = -26.82152738780503, (16, 3) = -384.7581143714662, (17, 1) = .49443414154220483, (17, 2) = -39.33552182611952, (17, 3) = -394.2542357356799, (18, 1) = -1.2180825786825746, (18, 2) = -53.82166494495346, (18, 3) = -390.98725879799497, (19, 1) = -3.663599829854037, (19, 2) = -68.9378273523391, (19, 3) = -364.3554533709833, (20, 1) = -6.790682032244631, (20, 2) = -82.81223942735504, (20, 3) = -304.7447782067546, (21, 1) = -10.452310970196194, (21, 2) = -93.50953969605982, (21, 3) = -205.29865643432555, (22, 1) = -14.180229882914377, (22, 2) = -98.99519214944469, (22, 3) = -72.51428534697104, (23, 1) = -17.521396851088035, (23, 2) = -99.01407158290625, (23, 3) = 76.63496096678163, (24, 1) = -20.296295881657187, (24, 2) = -94.7222241169801, (24, 3) = 227.8217234986213, (25, 1) = -22.506289855361793, (25, 2) = -87.49079585871775, (25, 3) = 372.81385385498794, (26, 1) = -24.238671480113556, (26, 2) = -78.31861638361846, (26, 3) = 509.2669438891046, (27, 1) = -25.579703152510636, (27, 2) = -67.83990377359022, (27, 3) = 636.994530145911, (28, 1) = -26.59962914680849, (28, 2) = -56.43892166690841, (28, 3) = 756.6540714469883, (29, 1) = -27.350861692718976, (29, 2) = -44.360678454090205, (29, 3) = 868.9883461788921, (30, 1) = -27.872564247073623, (30, 2) = -31.768407619168595, (30, 3) = 974.6721247793183, (31, 1) = -28.194497966345814, (31, 2) = -18.772234877979404, (31, 3) = 1074.3038558219753, (32, 1) = -28.339516338097162, (32, 2) = -5.445909446947036, (32, 3) = 1168.4109879149514, (33, 1) = -28.32524046551249, (33, 2) = 8.15799212324777, (33, 3) = 1257.4266346140048, (34, 1) = -28.165414760706334, (34, 2) = 22.00101835188759, (34, 3) = 1341.7044243975176, (35, 1) = -27.87092798584902, (35, 2) = 36.05161315989217, (35, 3) = 1421.5166574862594, (36, 1) = -27.45046541461933, (36, 2) = 50.2863172936417, (36, 3) = 1497.0914491096858, (37, 1) = -26.91099448460295, (37, 2) = 64.68625227277516, (37, 3) = 1568.611237092968, (38, 1) = -26.258035422800074, (38, 2) = 79.23768210215435, (38, 3) = 1636.228635346795, (39, 1) = -25.495766256210366, (39, 2) = 93.93289981377228, (39, 3) = 1700.0771336506948, (40, 1) = -24.62772878811068, (40, 2) = 108.75956231452248, (40, 3) = 1760.231589430135, (41, 1) = -23.65679257680415, (41, 2) = 123.70610360203507, (41, 3) = 1816.7424740635336, (42, 1) = -22.58497056483621, (42, 2) = 138.7655689743947, (42, 3) = 1869.6532845514434, (43, 1) = -21.41364299686328, (43, 2) = 153.9322389267795, (43, 3) = 1918.988077236452, (44, 1) = -20.143642894855606, (44, 2) = 169.20103738641026, (44, 3) = 1964.7513344628567, (45, 1) = -18.77531208673614, (45, 2) = 184.56726411455978, (45, 3) = 2006.9286785473587, (46, 1) = -17.308463785577665, (46, 2) = 200.02720191881534, (46, 3) = 2045.489305493254, (47, 1) = -15.742833500440952, (47, 2) = 215.57366381270867, (47, 3) = 2080.376141178764, (48, 1) = -14.07748834798679, (48, 2) = 231.2023620438113, (48, 3) = 2111.5223454566353, (49, 1) = -12.311201649894752, (49, 2) = 246.90787049883542, (49, 3) = 2138.8409051464855, (50, 1) = -10.442397132353205, (50, 2) = 262.6842145190337, (50, 3) = 2162.226136374619, (51, 1) = -8.468923343360544, (51, 2) = 278.52653824235927, (51, 3) = 2181.5549724770494, (52, 1) = -6.388204943712167, (52, 2) = 294.42939738489036, (52, 3) = 2196.682267250764, (53, 1) = -4.197150420318326, (53, 2) = 310.38713103269964, (53, 3) = 2207.439294439415, (54, 1) = -1.892601667252537, (54, 2) = 326.3903402911911, (54, 3) = 2213.629935602414, (55, 1) = .5290144403384773, (55, 2) = 342.4283606903575, (55, 3) = 2215.03197676574, (56, 1) = 3.071950114910132, (56, 2) = 358.4904700009592, (56, 3) = 2211.3937254474395, (57, 1) = 5.740854241512291, (57, 2) = 374.5633917646863, (57, 3) = 2202.429754200392, (58, 1) = 8.540470599699889, (58, 2) = 390.62915821433086, (58, 3) = 2187.8198302368046, (59, 1) = 11.476245256966607, (59, 2) = 406.6682461492493, (59, 3) = 2167.2034647983705, (60, 1) = 14.554220207210015, (60, 2) = 422.65803020173627, (60, 3) = 2140.174342248433, (61, 1) = 17.780264481034628, (61, 2) = 438.5681647539286, (61, 3) = 2106.282995578498, (62, 1) = 21.160183253505476, (62, 2) = 454.3610522058657, (62, 3) = 2065.035213402031, (63, 1) = 24.70000314066167, (63, 2) = 469.9927541150128, (63, 3) = 2015.8858040234484, (64, 1) = 28.405653224338753, (64, 2) = 485.41088215213205, (64, 3) = 1958.238445545726, (65, 1) = 32.282737127940095, (65, 2) = 500.55315920962886, (65, 3) = 1891.4460280515575, (66, 1) = 36.33528116108361, (66, 2) = 515.3425355069513, (66, 3) = 1814.8322638097427, (67, 1) = 40.565998727887454, (67, 2) = 529.6889889597641, (67, 3) = 1727.692167286808, (68, 1) = 44.97610249233706, (68, 2) = 543.4893781093477, (68, 3) = 1629.2991378423615, (69, 1) = 49.564815551335016, (69, 2) = 556.626589733943, (69, 3) = 1518.9203051842708, (70, 1) = 54.327433776793995, (70, 2) = 568.9657561995768, (70, 3) = 1395.87469532546, (71, 1) = 59.25696421609918, (71, 2) = 580.3613834866482, (71, 3) = 1259.5097767113623, (72, 1) = 64.34308239636641, (72, 2) = 590.6566951289624, (72, 3) = 1109.2417865240925, (73, 1) = 69.56998582501373, (73, 2) = 599.6830958927808, (73, 3) = 944.6440741817513, (74, 1) = 74.9209285737396, (74, 2) = 607.2722920468946, (74, 3) = 765.332374185341, (75, 1) = 80.23895127261001, (75, 2) = 613.1257096022034, (75, 3) = 576.0698764437751, (76, 1) = 85.32648255190304, (76, 2) = 617.1049532901717, (76, 3) = 384.4058454334638, (77, 1) = 90.16517673340196, (77, 2) = 619.3676770101681, (77, 3) = 192.15740890314953, (78, 1) = 94.76568300546467, (78, 2) = 620.0866880268571, (78, 3) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(78, {(1) = .0, (2) = 0.7422014940098305e-2, (3) = 0.15247037874053848e-1, (4) = 0.23520755103823496e-1, (5) = 0.3229677454019059e-1, (6) = 0.4163972613012182e-1, (7) = 0.5163047433585985e-1, (8) = 0.6236471548371652e-1, (9) = 0.7395995268651741e-1, (10) = 0.865635409488798e-1, (11) = .10037386494155838, (12) = .11564679222653715, (13) = .13272336112005387, (14) = .1520729596986236, (15) = .1744030835655522, (16) = .20081719187277686, (17) = .23287978474503113, (18) = .2696382833116828, (19) = .30942370514871853, (20) = .35052688440207136, (21) = .39189960663752765, (22) = .43045939689378565, (23) = .46406520016444347, (24) = .4926053926873776, (25) = .5167851003350923, (26) = .5376216024209438, (27) = .5559231840204688, (28) = .5722936854718627, (29) = .5871581085615549, (30) = .6008206508251621, (31) = .613507361562576, (32) = .6253918899303244, (33) = .6366076943924017, (34) = .6472594108447342, (35) = .6574286185464324, (36) = .667182426192274, (37) = .6765759166669013, (38) = .6856560419917522, (39) = .694464489935754, (40) = .7030331909945008, (41) = .7113893933075516, (42) = .7195587800827726, (43) = .7275642453721933, (44) = .7354262387990891, (45) = .7431631740698084, (46) = .7507921727962193, (47) = .7583272647542358, (48) = .7657828547984458, (49) = .7731719918385156, (50) = .7805069149512255, (51) = .787800042336253, (52) = .7950633754902232, (53) = .802308883829374, (54) = .8095471292208104, (55) = .816788620070316, (56) = .8240445807266021, (57) = .8313260771552303, (58) = .8386433234849713, (59) = .8460074049212739, (60) = .8534299380344416, (61) = .8609213167489855, (62) = .8684912825541682, (63) = .8761497779391109, (64) = .8839064180293265, (65) = .8917702742321805, (66) = .8997477423309259, (67) = .9078436543374889, (68) = .9160613937315915, (69) = .9244024655177719, (70) = .9328635823555885, (71) = .9414402432317543, (72) = .9501252904326655, (73) = .9589057176767743, (74) = .9677706161338872, (75) = .9764838806404585, (76) = .9847529627091501, (77) = .9925779854438055, (78) = 1.0}, datatype = float[8], order = C_order); Y := Matrix(78, 3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.21374101479472934e-9, (2, 1) = 0.6617043163614648e-14, (2, 2) = 0.15815604852839844e-11, (2, 3) = 0.21311837323331495e-9, (3, 1) = 0.25343727453304818e-13, (3, 2) = 0.3236859819203722e-11, (3, 3) = 0.21227882088379557e-9, (4, 1) = 0.608178113423069e-13, (4, 2) = 0.4970351848975599e-11, (4, 3) = 0.21125160962194817e-9, (5, 1) = 0.11336987512724689e-12, (5, 2) = 0.6786995734632931e-11, (5, 3) = 0.20993325149852807e-9, (6, 1) = 0.1850029120583241e-12, (6, 2) = 0.8693080167652104e-11, (6, 3) = 0.20819378569749641e-9, (7, 1) = 0.28253966655178614e-12, (7, 2) = 0.10684057021809762e-10, (7, 3) = 0.2058724893755894e-9, (8, 1) = 0.4083861282846956e-12, (8, 2) = 0.12759826289631252e-10, (8, 3) = 0.20278447790781166e-9, (9, 1) = 0.5665515205281028e-12, (9, 2) = 0.14908481409452215e-10, (9, 3) = 0.19858389734160558e-9, (10, 1) = 0.765632284881089e-12, (10, 2) = 0.1710637073672902e-10, (10, 3) = 0.19283723931777497e-9, (11, 1) = 0.10095317904433423e-11, (11, 2) = 0.19293637254403415e-10, (11, 3) = 0.18490648517398407e-9, (12, 1) = 0.13018676569087828e-11, (12, 2) = 0.21365714310981305e-10, (12, 3) = 0.17382791885584998e-9, (13, 1) = 0.16425961487017066e-11, (13, 2) = 0.23112487818588823e-10, (13, 3) = 0.15809028547142478e-9, (14, 1) = 0.20174042817671427e-11, (14, 2) = 0.24066937733876484e-10, (14, 3) = 0.13530521149880537e-9, (15, 1) = 0.23588523733158e-11, (15, 2) = 0.23231216316050875e-10, (15, 3) = 0.10156224121561319e-9, (16, 1) = 0.2393011093467379e-11, (16, 2) = 0.18149054144044492e-10, (16, 3) = 0.51706195251559185e-10, (17, 1) = 0.9084877415827434e-12, (17, 2) = 0.314096305880786e-11, (17, 3) = -0.32841258405195813e-11, (18, 1) = -0.45491514609546456e-11, (18, 2) = -0.20025596832171e-10, (18, 3) = 0.51921619668659705e-10, (19, 1) = -0.146658137108361e-10, (19, 2) = -0.2416251850244477e-10, (19, 3) = 0.43252805140703903e-9, (20, 1) = -0.24237492293530955e-10, (20, 2) = 0.3599372556048811e-10, (20, 3) = 0.1223259174809578e-8, (21, 1) = -0.24535443635530228e-10, (21, 2) = 0.1903555252463994e-9, (21, 3) = 0.2245871545259929e-8, (22, 1) = -0.11739792007986929e-10, (22, 2) = 0.37030660671350455e-9, (22, 3) = 0.28847498354569104e-8, (23, 1) = 0.6161988712155101e-11, (23, 2) = 0.5116509035009505e-9, (23, 3) = 0.30511215548502548e-8, (24, 1) = 0.24143172302904838e-10, (24, 2) = 0.6156361580552844e-9, (24, 3) = 0.2967037607906237e-8, (25, 1) = 0.4099280962473993e-10, (25, 2) = 0.6934931258243783e-9, (25, 3) = 0.27586166265908647e-8, (26, 1) = 0.5667287481842802e-10, (26, 2) = 0.7529934557834415e-9, (26, 3) = 0.24793432501917947e-8, (27, 1) = 0.7128596741818145e-10, (27, 2) = 0.7986347832025048e-9, (27, 3) = 0.21545638229423175e-8, (28, 1) = 0.8495334319877626e-10, (28, 2) = 0.8332910094275046e-9, (28, 3) = 0.17982758736276522e-8, (29, 1) = 0.9776913816729528e-10, (29, 2) = 0.8589525126881634e-9, (29, 3) = 0.14187573949711434e-8, (30, 1) = 0.10982483919576233e-9, (30, 2) = 0.876990864247837e-9, (30, 3) = 0.10219138652783984e-8, (31, 1) = 0.12119861873621406e-9, (31, 2) = 0.8884384414068472e-9, (31, 3) = 0.6113196945671567e-9, (32, 1) = 0.13194536181092119e-9, (32, 2) = 0.8940935343871139e-9, (32, 3) = 0.18958612224147546e-9, (33, 1) = 0.1421034511267267e-9, (33, 2) = 0.8946023759386806e-9, (33, 3) = -0.24151798358672923e-9, (34, 1) = 0.15173459103634197e-9, (34, 2) = 0.890292600785599e-9, (34, 3) = -0.680621711939455e-9, (35, 1) = 0.16085584900871135e-9, (35, 2) = 0.8816923848879957e-9, (35, 3) = -0.112675278788525e-8, (36, 1) = 0.1694927906902929e-9, (36, 2) = 0.8689606740007918e-9, (36, 3) = -0.15790797703029465e-8, (37, 1) = 0.17766688271008688e-9, (37, 2) = 0.8524194555746267e-9, (37, 3) = -0.2037000474455717e-8, (38, 1) = 0.1854153557046071e-9, (38, 2) = 0.8321878405243527e-9, (38, 3) = -0.24999561526619108e-8, (39, 1) = 0.19271741055197827e-9, (39, 2) = 0.8084450298695515e-9, (39, 3) = -0.2967596855008954e-8, (40, 1) = 0.19960793855467597e-9, (40, 2) = 0.7812801551816712e-9, (40, 3) = -0.3439694098295936e-8, (41, 1) = 0.20608273385672261e-9, (41, 2) = 0.7508009529277227e-9, (41, 3) = -0.3915938494413602e-8, (42, 1) = 0.21214411615546314e-9, (42, 2) = 0.7170679029918045e-9, (42, 3) = -0.4395917295441028e-8, (43, 1) = 0.2178162740801877e-9, (43, 2) = 0.6801782610494025e-9, (43, 3) = -0.4879454958084554e-8, (44, 1) = 0.22307505792290622e-9, (44, 2) = 0.6400707246037973e-9, (44, 3) = -0.5366363171426886e-8, (45, 1) = 0.22792663267245126e-9, (45, 2) = 0.596788468093401e-9, (45, 3) = -0.5856735844943015e-8, (46, 1) = 0.23235772030479177e-9, (46, 2) = 0.5503712224233628e-9, (46, 3) = -0.6350243465827074e-8, (47, 1) = 0.23638476869867436e-9, (47, 2) = 0.5007838964884985e-9, (47, 3) = -0.6846352628530876e-8, (48, 1) = 0.2399826547596872e-9, (48, 2) = 0.44797493712876514e-9, (48, 3) = -0.7345909288023861e-8, (49, 1) = 0.24314767746970955e-9, (49, 2) = 0.3919441530467946e-9, (49, 3) = -0.7847826952926815e-8, (50, 1) = 0.2458633553763264e-9, (50, 2) = 0.3325930338144637e-9, (50, 3) = -0.8351962221384333e-8, (51, 1) = 0.2481176496667275e-9, (51, 2) = 0.2698850071047016e-9, (51, 3) = -0.8858604164736875e-8, (52, 1) = 0.24989864164578096e-9, (52, 2) = 0.2037421854623591e-9, (52, 3) = -0.9367169852109535e-8, (53, 1) = 0.2511868319065834e-9, (53, 2) = 0.13403592712019737e-9, (53, 3) = -0.9877961190186058e-8, (54, 1) = 0.25194722806050053e-9, (54, 2) = 0.6068854794188144e-10, (54, 3) = -0.10389999059726765e-7, (55, 1) = 0.25216103000641414e-9, (55, 2) = -0.16426412087914983e-10, (55, 3) = -0.10904142671968567e-7, (56, 1) = 0.25181047788846003e-9, (56, 2) = -0.9744592357883526e-10, (56, 3) = -0.11418952784898342e-7, (57, 1) = 0.25084708208867255e-9, (57, 2) = -0.18252768360712056e-9, (57, 3) = -0.1193350480225618e-7, (58, 1) = 0.24924216152550573e-9, (58, 2) = -0.2718278165342341e-9, (58, 3) = -0.12449299125456e-7, (59, 1) = 0.2469647322823809e-9, (59, 2) = -0.3654926237200361e-9, (59, 3) = -0.12964216944950137e-7, (60, 1) = 0.2439385432872567e-9, (60, 2) = -0.46374566629486124e-9, (60, 3) = -0.13477191099854094e-7, (61, 1) = 0.2401392779850783e-9, (61, 2) = -0.5667827937551021e-9, (61, 3) = -0.13989002634087752e-7, (62, 1) = 0.2354974830501514e-9, (62, 2) = -0.6748203135319071e-9, (62, 3) = -0.144966926321542e-7, (63, 1) = 0.2299556698858384e-9, (63, 2) = -0.7879969316169068e-9, (63, 3) = -0.1499985558975845e-7, (64, 1) = 0.22344335042145828e-9, (64, 2) = -0.906569122267802e-9, (64, 3) = -0.15496633446164436e-7, (65, 1) = 0.21588699161848774e-9, (65, 2) = -0.1030706052504292e-8, (65, 3) = -0.1598507069938262e-7, (66, 1) = 0.2072001570759953e-9, (66, 2) = -0.11604415138593787e-8, (66, 3) = -0.16462981859028595e-7, (67, 1) = 0.1973239834078538e-9, (67, 2) = -0.12960869498348117e-8, (67, 3) = -0.16926252731900467e-7, (68, 1) = 0.1861481274670076e-9, (68, 2) = -0.14375072189369759e-8, (68, 3) = -0.17373690408853017e-7, (69, 1) = 0.17360182955573136e-9, (69, 2) = -0.15847891575527738e-8, (69, 3) = -0.17799737782051196e-7, (70, 1) = 0.1595911628943475e-9, (70, 2) = -0.17377594077856065e-8, (70, 3) = -0.18200148769816036e-7, (71, 1) = 0.14405378999774726e-9, (71, 2) = -0.1896185117484409e-8, (71, 3) = -0.1857211954096187e-7, (72, 1) = 0.12690950590380987e-9, (72, 2) = -0.20597762848508742e-8, (72, 3) = -0.1890888800221457e-7, (73, 1) = 0.10811586884916081e-9, (73, 2) = -0.2228107102170434e-8, (73, 3) = -0.1920524894652217e-7, (74, 1) = 0.8762389472881187e-10, (74, 2) = -0.2400509994779305e-8, (74, 3) = -0.19456175522202756e-7, (75, 1) = 0.6597647839692229e-10, (75, 2) = -0.2571949957407786e-8, (75, 3) = -0.19650196577522936e-7, (76, 1) = 0.4403563168815861e-10, (76, 2) = -0.27358008655389504e-8, (76, 3) = -0.19784033238859742e-7, (77, 1) = 0.2201801640944132e-10, (77, 2) = -0.28918571075789674e-8, (77, 3) = -0.1986208486392248e-7, (78, 1) = .0, (78, 2) = -0.3040105066991136e-8, (78, 3) = -0.19890096842081592e-7}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[78] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(1.9890096842081592e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [3, 78, [f(x), diff(f(x), x), diff(diff(f(x), x), x)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[78] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[78] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(3, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(78, 3, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(3, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(78, 3, X, Y, outpoint, yout, L, V) end if; [x = outpoint, seq('[f(x), diff(f(x), x), diff(diff(f(x), x), x)]'[i] = yout[i], i = 1 .. 3)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[78] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(1.9890096842081592e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [3, 78, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[78] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[78] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(78, 3, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(3, {(1) = 0., (2) = 0., (3) = 0.}); `dsolve/numeric/hermite`(78, 3, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 3)] end proc, (2) = Array(0..0, {}), (3) = [x, f(x), diff(f(x), x), diff(diff(f(x), x), x)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(x_bvp) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(x_bvp) else _ndsol := pointto(data[2][0]); return ('_ndsol')(x_bvp) end if end if; try res := solnproc(outpoint); [x = res[1], seq('[f(x), diff(f(x), x), diff(diff(f(x), x), x)]'[i] = res[i+1], i = 1 .. 3)] catch: error  end try end proc

(4)

``


 

Download Untitled.mw

Hi

I would like to use  the Liebniz notation that someone from the technical support posted here
Writing Derivatives at a Point Using Leibniz Notation
to display a formula that is not just a partial derivative but a more complex expression invoking partial derivatives. 
Typically an expression like this one:

2*(Diff(f(mu__1, mu__2), mu__1))^2*lambda__1^2-(Diff(f(mu__1, mu__2), mu__1))^2*mu__1^2+2*(Diff(f(mu__1, mu__2), mu__2))^2*lambda__2^2-(Diff(f(mu__1, mu__2), mu__2))^2*mu__2^2+2*(Diff(f(mu__1, mu__2), mu__1))*(Diff(f(mu__1, mu__2), mu__2))*lambda__1*lambda__2-2*(Diff(f(mu__1, mu__2), mu__1))*mu__1*(Diff(f(mu__1, mu__2), mu__2))*mu__2

Could anyone help me to do this?
Thanks in advance

(PS: I'm still using Maple 2015.2)

Can I get to know how to interface maple with gnu plot. Thank you.

Bonjour,

Comment écrire les composantes d'un vecteur contravariant avec des indices numériques ? Ce vecteur n'est pas un spacetimevector.

Par exemple : <x^1, x^2,x^3> avec cette écriture maple interprète ces indices comme des nombres et non comme des symboles

Merci pour vore retour

I do a calculation o a simple integral

 

      int(cosh(cos(2*t)), t = 0 .. 2*Pi)

 

and get the answer 0 (zero), which I know is incorrect. The cosh function of a real argument is always positive.

 

If I represent the cosh function as a sum of two exponentials

(1/2)*(int(cosh(cos(2*t)), t = 0 .. 2*Pi) + int(cosh(-cos(2*t)), t = 0 .. 2*Pi))

 

I get    

2*Pi*BesselI(0, 1)

which looks much better.

 

What's the matter? Why Maple yields two different results? Victor.

 

 

 

I'm trying to create an iterator function

Iter := proc(ff, n)    
    local i,f;
    if n = 0 then return (x->x); end;
    f := x->ff:
    f := apply(unapply(ff))(x);
    for i from 1 to n-1 do
        f := ff(f);
    end;    
    return unapply(f,x);
end:

 

This seems to work except that it converts the independent variable to x, which can cause problems.

 

That is, if I pass something like n->sin(n) then it will output something like x->sin(sin(x))...

 

Of course, I do explicitly use x but it is because I don't know how to get the input's independent variable.

 

Ideally I'd like to be able to work on multiple arguments and iterate over the first, by default.

 

e.g., f#2(x,y,z) = f(f(x,y,z),y,z)

 

Ultimately the proc above doesn't work well as I want to be able to use it in all contexts(I could pass the value to Iter but I'd rather use function notation.

 

This must be so complicated process to describe the exact mechanism in human or animals ... and there are many reserchs on web for this subject ! Not expected Large answer !

By this way i am just curious to know by support of signal processing methods available in maple we can model a very basic vibrator as larynx and variable duct (what kind of filter we can call ?) or cavity that play the role of tongue or lips for changing of main stream to made various phonemes or frequencies

Here is a movie that show the section of human vocal system :

Anatomy

is it possible to get all the iteration values for a minimization problem

Hey,

I want to animate action of linear transformation on multiple polygons, in the end, it should be a grid of multiple parallel lines that will get morphed. The transformation is defined by a matrix A.

So far I got this code to work:

with(plots):
with(plottools):
setoptions(style=patch,view=[-5..5,-5..5], scaling=constrained):
basis_i:=polygon([[0,0],[1,0]],color=red):

N:=20:
F:=(x,y) -> (1-k/N)*<x,y> + k/N*(A.<x,y>):
L := transform((x,y)->convert(F(x,y),list)):
A:=<<2,1>|<-1,1>>;
                          

frames:=seq(L(basis_i),k=0..N):

display(frames, insequence=true);
 

It animates the basis vector nicely, but I can't seem to figure out, how to animate multiple lines, multiple polygons.

Anyone knows how to do this?

Any help will be much appreciated.

 

I try to fill an Array with a procedure to have pointpairs for a plot. Here is my problem. It doesn't work I wont it to.

 


 


 

Can someone help my please? The first procedure works, I tested it with some numbers, but the second one is the Problem.

Hi dear maple team. i have a question on integration and i need a "real" and "finite" solution with any assumption or options. thanks for the help.


 

restart

f := ((1 - a)^2 + a^2*((1 - exp(-y))*(1 - exp(-x)) - 2 + exp(-x) + exp(-y)) + a*(2 - exp(-x) - exp(-y) + (1 - exp(-y))*(1 - exp(-x))))/(1 - a*exp(-x)*exp(-y))^3;

((1-a)^2+a^2*((1-exp(-y))*(1-exp(-x))-2+exp(-x)+exp(-y))+a*(2-exp(-x)-exp(-y)+(1-exp(-y))*(1-exp(-x))))/(1-a*exp(-x)*exp(-y))^3

(1)

a := 0.3;f

.3

 

(.91+.39*(1-exp(-y))*(1-exp(-x))-.21*exp(-x)-.21*exp(-y))/(1-.3*exp(-x)*exp(-y))^3

(2)

s := 2*evalf(int((int(f*exp(-x)*exp(-y), x = 0 .. y + t,AllSolutions)), y = 0 .. infinity,AllSolutions)) assuming real ;

 

 


 

Download stat1.mw

Hello, Probably there is a way to do this easily but I do not quickly find it within the help.

I want

rand(0..1)

to give a true! random number and not always the same number; otherwise it should be called

predefinedlist()

Seed is deprecated, not sure it would help though. So how do I go abouts?

First 11 12 13 14 15 16 17 Last Page 13 of 1635