Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hey,

I've been trying to divide an equation into matrixes, with not a lot of luck.

Simple example:

A=2b remade into [A]=[2]*[b]

This is a basic overview of the problem, i need it to work with bigger matrixes.

Thank you in advance.

I am solving a system of ODEs with dsolve(ODES, numeric, method = lsode[adamsfull]) and I noticed that some of the solutions are really small numbers, of the order of 10^-{10} and smaller. Certainly for all intents and purposes I will treat those as zero, but my question is: what flag do I set in dsolve to force Maple stop seeking for a solution when it is so close to zero and set it to 0.0? It seems like a great waste of computational time to try and find the significant digits of the order one number in front of 10^{-10} for any particular solution, at least in my case. So, is there a way to add some option in dsolve such that maple sets that to zero before trying to fully calculate it fully (i.e. all the significant digits) ?? I have looked at abserr and relerr but that does not do the trick. 

 

IF the question was asked before, forgive me. I have tryed to find an answer within the search here and on the maple help page but was unsuccessful. 

This should be trivial but I am not able to figure out the right syntax to execute it

The pdf is given by :

f_X(x)={ 1/25 *x, 0<=x<5

             2/5 -x/25, 5<=x<10

             0, otherwise

I have tried to use the "CumulativeDistributiveFunction" so far

I’ve been having some issues working with large datasets / matrixes in maple 17.02 and 2015. My data consists of a 10^7 x 14 csv file with several lines of header information. Attached is a small sample. The ImportData assistant hangs while importing said file. The javaw process stops responding for a period of time then stops consuming cpu time. I’ve have successfully imported a file of the same format but reduced in size (10^6 x 14) with this same function. So I don’t believe it’s a formatting issue but rather its size.

Are there size limitations to the ImportData function?

The attached maple file has a test case in which the data set (sans header info) is created and exported as a csv file. The export time took longer than I expected (~2 hrs). I then attempted to import the file using two different functions. The ImportMatrix function successfully imported the test case file in approximately 20 minutes, however the ImportData functions seems to fail in the same way as it does importing my actual dataset. I haven’t successfully used the ImportMatrix function on my actual dataset; I’m assuming the header information is the source of the problem.

Are there other methods to import this data?

As stated above, I’m tried both maple 17 and 2015 both 64 bit versions running on an Intel i7 M620 @ 2.67Ghz, 8 GB ram (~ 6 GB avail), sata 2 ssd.

Thank you,

Ron

importtest.mw  Sample.txt

 

I have to solve a numerical problem and I was wondering how to make maple treat very small numbers as zero. Say I do not care about anything less than 10^-5, so maple should treat all such numbers as zero. How to set this behaviour for the entire session? Thanks!

 

Hi!

 

I am trying to solve a large nxl system of coupled differential equations. Maple seems to have trouble even for small n's so I wanted to know if anyone has any suggestions. Take the case of the following system of ODEs for my unknown functions f[0,0](x) and f[1,0](x). 

 

ODEs:= {diff(f[0, 0](x), x)+2.*f[0, 0](x)/x^5+.5000000000*f[0, 0](x)/x = -15.58845727*sin(.5773502693*x)/x^2+140.2961154*sin(.5773502693*x)/x^4-81.*cos(.5773502693*x)/x^3, diff(f[1, 0](x), x)+6.*f[1, 0](x)/x^5+1.500000000*f[1, 0](x)/x-1.*f[0, 0](x)/x = -15.58845727*sin(.5773502693*x)/x^2+25.98076212*sin(.5773502693*x)*(1/x^4)^(1/4)*exp(1/x^4)*GAMMA(.7500000000, 1/x^4)/x^2+140.2961154*sin(.5773502693*x)/x^4-233.8268591*sin(.5773502693*x)*(1/x^4)^(1/4)*exp(1/x^4)*GAMMA(.7500000000, 1/x^4)/x^4-81.*cos(.5773502693*x)/x^3+135.*cos(.5773502693*x)*(1/x^4)^(1/4)*exp(1/x^4)*GAMMA(.7500000000, 1/x^4)/x^3-20.78460970*sin(.5773502693*x)/x^6+6.000000004*cos(.5773502693*x)/x^5+62.35382908*sin(.5773502693*x)/x^8-36.00000002*cos(.5773502693*x)/x^7, f[0, 0](.1) = 1.503497680, f[1, 0](.1) = -.5011660086}

 

 

Following Preben Alsholm's suggestion from my previous thread I am using lsode[adamsfull], since no other method i have tried worked for this problem. I am currently using:

 

Sollsodefull:=dsolve({ODEs}, numeric, method = lsode[adamsfull])

 

and it seems to work. I am wondering if there is a way to optimize this, as I will be extending my problem to n and l much larger than order unity numbers, therefore my system will contain about 10^4-10^5 equations. Solving this symple system of 2 equations takes a bit less than a second, but still it takes some time for the processor on my MBP. I am affraid it will be a nightmare for the full problem. Whats the most optimal dsolve option for this kind of problem? Any ideas?

 

I have also attempted dverk78, rkf45,rosenbrock, lsode(without the adamsfull option), and all failed for this particular system. Errors were:

1. For rkf45: Error, (in f00) cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

2. For dverk78: Error, (in Soldverk78) cannot evaluate the solution past .1, step size < hmin, problem may be singular or error tolerance may be too small

3. For rosenbrock: Error, (in dsolve/numeric/SC/firststep) unable to evaluate the partial derivatives of f(x,y) for stiff solution

4. For lsode without [adamsfull]: Error, (in Sollsode) an excessive amount of work (greater than mxstep) was done

5. For default method with stiff=true and inplicit=true options: Error, (in dsolve/numeric/SC/firststep) unable to evaluate the partial derivatives of f(x,y) for stiff solution

Dear all,

I want to use the Maple Compiler to improve the performance of some of my codes. To get used to it, I tried doing the examples from the ?Compiler help-page, but everytime I run the compiler, I get the error message:

"Error, (in Compiler:-Compile) compiler exited with nonzero status 1: 

Do some of you know a possible reason for this?

Thank you all.

Download test.mw

I am not aware if is a problem with me or else.

Have some questions about the select command and (possible) big tensorial expressions. I think it would be a simple question to manage, but I still have problems.

TensorEnergiaMomento.mw

Thanks a lot

When solving a nonlinear differential equation on some variable x, but using some other parameter w, I am finding on Maple some complicated solution, which I would like to simplify by making evident what is the x dependence, and where I can compact complicated functions of the parameter w alone into new constants. How can I do that automatically?

 

For example, to have

 

(sinh(w) + ln(w))*x 

 

to be automatically called

 

c*x

 

Thank you in advance.

Hello.

given this expression

T:=unapply((1/6930)*exp(-(1/7938)*(X[4]-933)^2)*exp(-(1/6050)*(X[2]-805)^2)/((1+exp((1/50)*X[4]-(1/50)*X[2]))*Pi),X[2]);

U := unapply(sum(T(X[2]), X[4] = 0 .. 3600), X[2]):

I want to display U, but not all 3600 terms. is there anyway to simplify/reduce this sum?

kind of like geo series a+ar+ar^2+ar^3+...+ar^(n-1)=sum(ar^k,k=0..n-1) can be reduced to a*(1-r^n)/(1-r)

 

Hello. Earlier, I asked about it, (see http://www.mapleprimes.com/questions/203573-How-To-Do-Simple-Operations-On-Tensors). However, not all I was able to understand. Below I will give a try, and maybe you'll show me where I'm wrong.

Also, I'm interested in how you can determine the components of the tensor in a different coordinate system connected with the original in any conversion. Thank for your help.

restart; with(Physics); with(DifferentialGeometry)

ds := Physics:-`^`(dx__1, 2)+Physics:-`^`(dx__2, 2)+Physics:-`^`(dx__3, 2)

dx__1^2+dx__2^2+dx__3^2

(1)

Physics:-Setup(coordinates = (X = [x__1, x__2, x__3]), dimension = 3, metric = ds, quiet)

[coordinatesystems = {X}, dimension = 3, metric = {(1, 1) = 1, (2, 2) = 1, (3, 3) = 1}]

(2)

g_[]

g_[mu, nu] = (Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 2) = 1, (2, 3) = 0, (3, 3) = 1}, storage = triangular[upper], shape = [symmetric]))

(3)

``

u__1 := Physics:-`*`(Physics:-`*`(P, Physics:-`^`(Physics:-`*`(Physics:-`*`(4, Pi), G), -1)), Physics:-`*`(x__3, Physics:-`*`(x__1, Physics:-`^`(Physics:-`^`(r, 3), -1)))-Physics:-`*`(Physics:-`*`(1-Physics:-`*`(2, nu), x__1), Physics:-`^`(Physics:-`*`(r, r+x__3), -1))):u__2 := Physics:-`*`(Physics:-`*`(P, Physics:-`^`(Physics:-`*`(Physics:-`*`(4, Pi), G), -1)), Physics:-`*`(x__2, Physics:-`*`(x__3, Physics:-`^`(Physics:-`^`(r, 3), -1)))-Physics:-`*`(Physics:-`*`(1-Physics:-`*`(2, nu), x__2), Physics:-`^`(Physics:-`*`(r, r+x__3), -1))):u__3 := Physics:-`*`(Physics:-`*`(P, Physics:-`^`(Physics:-`*`(Physics:-`*`(4, Pi), G), -1)), Physics:-`*`(Physics:-`*`(2, 1-nu), Physics:-`^`(r, -1))+Physics:-`*`(Physics:-`^`(x__3, 2), Physics:-`^`(Physics:-`^`(r, 3), -1))):

`e__1,1` := diff(u__1, x__1):`e__2,2` := diff(u__2, x__2):`e__3,3` := diff(u__3, x__3):

`e__1,2` := Physics:-`*`(Physics:-`^`(2, -1), diff(u__1, x__2)+diff(u__2, x__1)):`e__1,3` := Physics:-`*`(Physics:-`^`(2, -1), diff(u__1, x__3)+diff(u__3, x__1)):`e__2,3` := Physics:-`*`(Physics:-`^`(2, -1), diff(u__2, x__3)+diff(u__3, x__2)):

`e__2,1` := `e__1,2`:

`e__3,1` := `e__1,3`:

`e__3,2` := `e__2,3`:

  E := matrix(3, 3, proc (i, j) options operator, arrow; e[i, j] end proc)

Matrix(3, 3, {(1, 1) = e[1, 1], (1, 2) = e[1, 2], (1, 3) = e[1, 3], (2, 1) = e[2, 1], (2, 2) = e[2, 2], (2, 3) = e[2, 3], (3, 1) = e[3, 1], (3, 2) = e[3, 2], (3, 3) = e[3, 3]})

(4)

Physics:-Define(E[i, j])

{gamma[mu], E[i, j], sigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], delta[mu, nu], epsilon[alpha, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(5)

Physics:-TensorArray(%)

{E[i, j], Array(1..3, 1..3, 1..3, {(1, 1, 1) = 0, (1, 1, 2) = 0, (1, 1, 3) = 0, (1, 2, 1) = 0, (1, 2, 2) = 0, (1, 2, 3) = 0, (1, 3, 1) = 0, (1, 3, 2) = 0, (1, 3, 3) = 0, (2, 1, 1) = 0, (2, 1, 2) = 0, (2, 1, 3) = 0, (2, 2, 1) = 0, (2, 2, 2) = 0, (2, 2, 3) = 0, (2, 3, 1) = 1, (2, 3, 2) = 1, (2, 3, 3) = 1, (3, 1, 1) = 0, (3, 1, 2) = 0, (3, 1, 3) = 0, (3, 2, 1) = -1, (3, 2, 2) = -1, (3, 2, 3) = -1, (3, 3, 1) = 0, (3, 3, 2) = 0, (3, 3, 3) = 0}), Array(1..3, {(1) = x__1, (2) = x__2, (3) = x__3}), Array(1..3, {(1) = Physics:-Psigma[1], (2) = Physics:-Psigma[2], (3) = Physics:-Psigma[3]}), Array(1..3, {(1) = Physics:-d_[1], (2) = Physics:-d_[2], (3) = Physics:-d_[3]}), Array(1..3, {(1) = Physics:-Dgamma[1], (2) = Physics:-Dgamma[2], (3) = Physics:-Dgamma[3]}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1})}

(6)

``

Physics:-Setup(dimension)

[dimension = 3]

(7)

NULL

Physics:-Define(E[i, j], query)

[E, [0, 0, 0], 0]

(8)

DifferentialGeometry:-DGsetup([y__1, y__2, y__3], M):

Phi1 := DifferentialGeometry:-Transformation(N, M, [y__1 = Physics:-`*`(Physics:-`^`(sqrt(6), -1), x__1)+Physics:-`*`(Physics:-`*`(2, Physics:-`^`(sqrt(6), -1)), x__2)+Physics:-`*`(Physics:-`^`(sqrt(6), -1), x__3), y__2 = Physics:-`*`(Physics:-`^`(sqrt(2), -1), x__1)-Physics:-`*`(Physics:-`^`(sqrt(3), -1), x__2)+Physics:-`*`(Physics:-`^`(sqrt(3), -1), x__3), y__3 = Physics:-`*`(Physics:-`^`(sqrt(2), -1), x__1)-Physics:-`*`(Physics:-`^`(sqrt(2), -1), x__3)]):

NULL

 

Download 1.mw

I am trying to explore the equality of two lengthy expressions. Unfortunately, my relations that all are symbolic, are lengthy and I use 'verify' command to explore the equality of them. When I use this command the 'FAIL' message appears. Maybe it is because of lengthy expressions and Maple cannot exploring equality of them. I have attached the corresponding file. Does anyone know what's the real problem? Thanks in advance.

MMatrix.mw

Hello, 

is there a way I can use data (variables) from Maple environment in the Maplesim environment. 

I have a scirpt in maple that generates the robots joints angles and need to use them in the 3D robot built in maplesim. I know I can export/Import data, but this sounds redundant. Is there a way to simply use an input block as a source of the data in maplesim and have the variable name generated in maple used int. Similar to what Matlab/Simulink does.. 

 

 

thanks.

Могу ли я использовать Клен, чтобы найти конкретные решения, которые выражаются либо в начальных и эллиптических функций для систем обыкновенных дифференциальных уравнений. Например, вы можете получить в Maple решений (sub_Solve01, sub_Solve02) для систем, которые перечислены в файле?
exp01.mw

hello
i have a problem that you could help me
i have an expression that i want convert it to an expression according to the expression q[d] with maple
i have bellow expressions
B[d]:=(-d*w[1]+w[3])/(((-2*w[1]+w[3])^2)-((-d*w[1]+w[3])^2))
B[o]:=(-2*w[1]+w[3])/(((-2*w[1]+w[3])^2)-((-d*w[1]+w[3])^2))
A[o]:=w[1]*(alpha[o]-c[o]-t[o])+2*w[2]*e[o]
A[d]:=w[1]*(alpha[d]-c[d]-t[d])+2*w[2]*e[d]
q[o]:=B[o]*A[o]-B[d]*A[d]
q[d]:=B[o]*A[d]-B[d]*A[o]
i want simplify expression U[d] such as this one
U[d]:=w[1]*(q[d]*(alpha[d]-q[d]-d*q[o]-c[d]-t[d])-C)+w[2]*(e[d]*q[d]+e[o]*q[o])+w[3]*((1/2)*(q[d]+q[o])^2)
I'm looking to simplify U[d] according to the expression q[d]
please please help me

First 1257 1258 1259 1260 1261 1262 1263 Last Page 1259 of 2228