Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi, I try to solve the below integral. when I press enter key maple dosen't show answer and show the integral again.

int(r*r[bc]*r[tc], r = r[bc] .. r[tc]);

but when I write intgral this way and use " i " as subscript ,maple solve it.

int(r[i]*r[bc]*r[tc], r[i] = r[bc] .. r[tc]);

I just want to know why?

what is difference between first and second integral?

and also is there any way (or any packages) to solve these integrals?

(I read https://www.maplesoft.com/applications/view.aspx?SID=6846&view=html article befor)

thanks.

Good day everyone,

I'm relatively new to Maple, and I study engineering (not maths), so maybe my problem is related to a bad approach of the equations.

The problem is that I'm asking Maple to do a double integral of a "complex" expression and it only solve the first integral, but not the second.

Here is the code:

https://www.dropbox.com/home/C%C3%81LCULO%20FUERZAS

Thanks.

Dears!

Hope everyone should be fine. I am face to import excel sheet in maple. I saved execl sheet with name "Employees.xlsx" at desktop. When I use the following command
S := Import("Employees.xlsx", 1, "A1:B101");

I got the following error. 

"Error, (in ExcelTools:-Import) Could not open the file"

Please help me to fix this problem. I am waiting positive response. 

Special request to:

@Carl Love
@Preben Alsholm
@acer

  1. (2*k^3-6*k^2+7*k+15-k*sqrt(k^6-12*k^5+64*k^4-198*k^3+448*k^2-636*k+369))/(-k^4+2*k^3-2*k^2+10*k+15)
  2. (k^3+5*k+(-k^2+k)*sqrt(k^4-10*k^3+37*k^2-60*k+180)+30)/(-k^4+k^3+k^2+5*k+30)

Please I am trying to get a compact result for this code in particular the lines assigne "a" and "b" respectively. I am sure the result shoud not be more than two lines. Can someone be of help? 

restart:
P:=a[0]+(a[1]*x)/(1+(a[2]*x)/(1+(a[3]*x))):
Q:=diff(P,x):
T:=diff(P,x,x):
e1:=simplify(eval(P, x=q))=y[n]:
e2:=simplify(eval(Q,x=q))=f[n]:
e3:=simplify(eval(Q,x=q+h))=f[n+1]:
e4:=simplify(eval(T,x=q+h))=g[n+1]:
var:=seq(a[i], i=0..3):
M:=e||(1..4):
Cc:=eval(<var>, solve(eval({M}),{var}) ):
for i from 1 to 4 do
	a[i-1]:=Cc[i]:
end do:
Cf:=P:
a:=y[n+1]=collect(simplify(eval(Cf, x=q+h)),[y[n], f[n], f[n+1],g[n+1]], recursive):
b:=map(eval@allvalues, [a]);

 

I'm receiving a very interesting error when attempting to solve a system of differntial equations:

{sqrt(2)*sqrt(F1(t))*diff(F2(t),t) = 0}:
% union {F3(t) = 0}:
pdsolve(%, {F1(t),F2(t),F3(t)});

When attempting to run this code, I get the following error:

Error, (in pdsolve/sys) invalid input: DifferentialAlgebra:-DifferentialRing expects value for keyword parameter blocks to be of type {undefined, Or(list({name, unknown, list({name,unknown})}),name,unknown)}, but received [F3, F2, _F1 = (NULL), F1 = [_F1, F1], _F2] 

Interestingly, removing the second line, or even the sqrt(2), allows the calculation to proceed correctly. It this a bug, or am I doing something wrong?

Thank you very much!

(I'm aware this would technically be a system of ODEs, not PDEs; my actual code includes additional partial derivatives. Additionally, dsolve appears to only generate a trivial solution in this case).

 

Hey folks.

I need to do a kind of loop calc. in maple and im not shure how to. 

lets say i guess a temperature T.

i then put it through all soughts of eqations where the variabel T is necessary for the outcome of my result, which i then use again as T. the loop should finish when T as a result is the same as my guess in the beginning. like:

T:=45 

bla bla calculation

T_new:= 35

again 

T:=35

bla bla calculation

T_new= 35 

Finish!!

 

Any ideas?

Dear sir I want to plot the graph for different values of F=0.1, F=0.2,F=0.5 . My codes are given and i am attaching the sample graph. For F=0.1, Nb=0.1,0.2,0.3 three curves

Similarly For F=0.2,Nb=0.1,0.2,0.3 three curves and for F=0.5, Nb=0.1,0.2,0.3 three curves. Total nine curves 

restart:
h:=z->1-(delta2/2)*(1 + cos(2*(Pi/L1)*(z - d1 - L1))):
K1:=((4/h(z)^4)-(sin(alpha)/F)-h(z)^2+Nb*h(z)^4):
lambda:=Int(K1,z=0..1):

L1:=0.2:
d1:=0.2:
alpha:=Pi/6:
plot( [seq(eval(lambda, Nb=j), j in [0.1,0.2,0.3])], delta2=0.02..0.1);

please how can I simplify the results of assigned K cum each of the coefficients further in the following code? the results are too large.

restart:
#k=2:
omega:=u/h:
psi:=v/h:
t:=(sum(a[j]*x^j,j=0..2)+a[3]*sin(omega*x)+a[4]*cos(omega*x)+a[5]*sin(psi*x)+a[6]*cos(psi*x)):
F:=diff(t,x):
G:=diff(t,x,x):
p1:=simplify(eval(t,x=q+h))=y[n+1]:
p2:=simplify(eval(F,x=q))=f[n]:
p3:=simplify(eval(F,x=q+h))=f[n+1]:
p4:=simplify(eval(F,x=q+2*h))=f[n+2]:
p5:=simplify(eval(G,x=q))=g[n]:
p6:=simplify(eval(G,x=q+h))=g[n+1]:
p7:=simplify(eval(G,x=q+2*h))=g[n+2]:
vars:= seq(a[i],i=0..6):
Cc:=eval(<vars>, solve({p||(1..7)}, {vars})):
for i from 1 to 7 do
	a[i-1]:=Cc[i]:
end do:
Cf:=t:

K:= collect(combine(simplify(eval(Cf,x=q+2*h),size),trig),{y[n+1],f[n],f[n+1],f[n+2],g[n],g[n+1],g[n+2]},factor):


alpha[1]=simplify(coeff(K,y[n+1]));
beta[0]=simplify(coeff(K,f[n]),size);
beta[1]=simplify(coeff(K,f[n+1]),size):
beta[2]=simplify(coeff(K,f[n+2]),size):
gamma[0]=simplify(coeff(K,g[n]),size):
gamma[1]=simplify(coeff(K,g[n+1]),size):
gamma[2]=simplify(coeff(K,g[n+2]),size):

 

I need to plot a trajectory where the horizontal equation is x(t) = 4t and the vertical is y(t)=4t-0.5t^2

How would I plot the two equations at once to make a trajectory?

If someone could please explain how to do it (also doing it would be nice) because I'm sure I'll have to do it again.

How do I apply select to a set element-wise?

I have defined a procedure which computes the order of an element g mod p.

findOrderOf:=proc(g,p)
  local i:=1;
  local gpwr:=1;
  for i from 1 to p-1 do
    gpwr:=gpwr*g mod p;
    if(gpwr = 1) then:
      return i;
    end if:
  end do:
end proc:

I then want to select the primes which are generated by 2 and 3.

primes:=select(isprime,[`$`(2000 .. 3000)]);
select(findOrderOf(2,x=p)=p-1 and findOrderOf(3,x=p)=p-1,primes);

I am stuck with how to make the last line work.

 

 

hi

please help me for simplify (factor) this equations.

thanks

vel.mw
 

simplify(-(1/226609908940800)*(106722*Br*NT*ln(h)*NB-106722*Br*NT*ln(R0)*NB-106722*Br*NT^2*ln(h)+106722*Br*NT^2*ln(R0)-106722*NB^2*Gr*ln(h)+106722*NB^2*Gr*ln(R0)+106722*Gr*NT*ln(h)*NB-106722*Gr*NT*ln(R0)*NB)*r^12/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-524288*Br*NT*ln(h)*R0*NB-524288*Br*NT*ln(h)*h*NB+524288*Br*NT*ln(R0)*R0*NB+524288*Br*NT*ln(R0)*h*NB+524288*Br*NT^2*ln(h)*R0+524288*Br*NT^2*ln(h)*h-524288*Br*NT^2*ln(R0)*R0-524288*Br*NT^2*ln(R0)*h+524288*NB^2*Gr*ln(h)*R0+524288*NB^2*Gr*ln(h)*h-524288*NB^2*Gr*ln(R0)*R0-524288*NB^2*Gr*ln(R0)*h-524288*Gr*NT*ln(h)*R0*NB-524288*Gr*NT*ln(h)*h*NB+524288*Gr*NT*ln(R0)*R0*NB+524288*Gr*NT*ln(R0)*h*NB)*r^11/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(1920996*Br*NT*ln(h)*R0*h*NB-15367968*L^2*Br*NT^2*ln(h)+15367968*L^2*Br*NT^2*ln(R0)-15367968*L^2*Gr*NB^2*ln(h)+15367968*L^2*Gr*NB^2*ln(R0)-960498*NB^2*Gr*ln(h)*R0^2-960498*NB^2*Gr*ln(h)*h^2+960498*NB^2*Gr*ln(R0)*R0^2-1920996*Br*NT*ln(R0)*R0*h*NB+1920996*Gr*NT*ln(h)*R0*h*NB-1920996*Gr*NT*ln(R0)*R0*h*NB+960498*NB^2*Gr*ln(R0)*h^2-960498*Br*NT^2*ln(h)*h^2+960498*Br*NT^2*ln(R0)*R0^2-960498*Br*NT^2*ln(h)*R0^2+960498*Br*NT^2*ln(R0)*h^2+1920996*Br*NT^2*ln(R0)*R0*h-960498*Gr*NT*ln(R0)*h^2*NB+960498*Gr*NT*ln(h)*h^2*NB-960498*Gr*NT*ln(R0)*R0^2*NB+960498*Gr*NT*ln(h)*R0^2*NB-1920996*NB^2*Gr*ln(h)*R0*h+1920996*NB^2*Gr*ln(R0)*R0*h-15367968*L^2*Gr*NB*NT*ln(R0)-960498*Br*NT*ln(R0)*h^2*NB+15367968*L^2*Gr*NB*NT*ln(h)+960498*Br*NT*ln(h)*h^2*NB-960498*Br*NT*ln(R0)*R0^2*NB-15367968*L^2*Br*NB*NT*ln(R0)+960498*Br*NT*ln(h)*R0^2*NB-1920996*Br*NT^2*ln(h)*R0*h+15367968*L^2*Br*NB*NT*ln(h))*r^10/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-63438848*L^2*Br*NB*NT*ln(h)*R0-63438848*L^2*Br*NB*NT*ln(h)*h+63438848*L^2*Br*NB*NT*ln(R0)*R0+63438848*L^2*Br*NB*NT*ln(R0)*h+63438848*L^2*Br*NT^2*ln(h)*R0+63438848*L^2*Br*NT^2*ln(h)*h-63438848*L^2*Br*NT^2*ln(R0)*R0-63438848*L^2*Br*NT^2*ln(R0)*h+63438848*L^2*Gr*NB^2*ln(h)*R0+63438848*L^2*Gr*NB^2*ln(h)*h-63438848*L^2*Gr*NB^2*ln(R0)*R0-63438848*L^2*Gr*NB^2*ln(R0)*h-63438848*L^2*Gr*NB*NT*ln(h)*R0-63438848*L^2*Gr*NB*NT*ln(h)*h+63438848*L^2*Gr*NB*NT*ln(R0)*R0+63438848*L^2*Gr*NB*NT*ln(R0)*h)*r^9/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(11116875*Br*NT^2*R0^4-11116875*Br*NT^2*h^4-11116875*NB^2*Gr*h^4+1536796800*p*ln(h)*NB+11116875*NB^2*Gr*R0^4-1536796800*p*ln(R0)*NB+11116875*Gr*NT*h^4*NB-11116875*Br*NT*R0^4*NB-11116875*Gr*NT*R0^4*NB-192099600*L^2*Gr*NB*NT*ln(R0)*R0*h+192099600*L^2*Gr*NB*NT*ln(h)*R0*h-192099600*L^2*Br*NB*NT*ln(R0)*R0*h+192099600*L^2*Br*NB*NT*ln(h)*R0*h-5336100*Br*NT^2*ln(R0)*R0*h^3-11116875*Gr*NT*R0^3*h*NB-11116875*Br*NT*R0^3*h*NB+11116875*Br*NT*R0*h^3*NB+11116875*Gr*NT*R0*h^3*NB+5336100*Gr*NT*ln(R0)*R0*h^3*NB+24012450*Gr*NT*ln(R0)*R0^2*h^2*NB-24012450*Gr*NT*ln(h)*R0^2*h^2*NB-5336100*Gr*NT*ln(h)*R0^3*h*NB-5336100*Gr*NT*R0*h^3*ln(r)*NB+5336100*Gr*NT*R0^3*h*ln(r)*NB-96049800*L^2*Gr*NB*NT*ln(R0)*h^2-96049800*L^2*Gr*NB*NT*ln(R0)*R0^2+96049800*L^2*Gr*NB*NT*ln(h)*h^2+96049800*L^2*Gr*NB*NT*ln(h)*R0^2+192099600*L^2*Gr*NB^2*ln(R0)*R0*h-192099600*L^2*Gr*NB^2*ln(h)*R0*h+5336100*Br*NT*ln(R0)*R0*h^3*NB+24012450*Br*NT*ln(R0)*R0^2*h^2*NB-24012450*Br*NT*ln(h)*R0^2*h^2*NB-5336100*Br*NT*ln(h)*R0^3*h*NB-5336100*Br*NT*R0*h^3*ln(r)*NB+5336100*Gr*NT*ln(R0)*h^4*NB-5336100*Gr*NT*ln(h)*R0^4*NB-5336100*Gr*NT*h^4*ln(r)*NB+5336100*Br*NT*R0^3*h*ln(r)*NB+192099600*L^2*Br*NT^2*ln(R0)*R0*h-192099600*L^2*Br*NT^2*ln(h)*R0*h-96049800*L^2*Br*NB*NT*ln(R0)*h^2-96049800*L^2*Br*NB*NT*ln(R0)*R0^2+96049800*L^2*Br*NB*NT*ln(h)*h^2+96049800*L^2*Br*NB*NT*ln(h)*R0^2+5336100*Gr*NT*R0^4*ln(r)*NB-5336100*NB^2*Gr*ln(R0)*R0*h^3-24012450*NB^2*Gr*ln(R0)*R0^2*h^2+24012450*NB^2*Gr*ln(h)*R0^2*h^2+5336100*NB^2*Gr*ln(h)*R0^3*h+5336100*NB^2*Gr*R0*h^3*ln(r)-5336100*NB^2*Gr*R0^3*h*ln(r)+96049800*L^2*Gr*NB^2*ln(R0)*h^2+96049800*L^2*Gr*NB^2*ln(R0)*R0^2-96049800*L^2*Gr*NB^2*ln(h)*h^2-96049800*L^2*Gr*NB^2*ln(h)*R0^2-1536796800*L^4*Gr*NB*NT*ln(R0)+5336100*Br*NT^2*R0*h^3*ln(r)+1536796800*L^4*Gr*NB*NT*ln(h)-5336100*Br*NT^2*R0^3*h*ln(r)-5336100*Br*NT*ln(h)*R0^4*NB+5336100*Br*NT*ln(R0)*h^4*NB-5336100*Br*NT*h^4*ln(r)*NB+5336100*NB^2*Gr*ln(h)*R0^4-5336100*NB^2*Gr*ln(R0)*h^4-5336100*NB^2*Gr*R0^4*ln(r)+5336100*NB^2*Gr*h^4*ln(r)-1536796800*L^4*Gr*NB^2*ln(h)+1536796800*L^4*Gr*NB^2*ln(R0)+1536796800*L^4*Br*NT^2*ln(R0)-5336100*Br*NT^2*R0^4*ln(r)+5336100*Br*NT^2*h^4*ln(r)-1536796800*L^4*Br*NT^2*ln(h)+11116875*Br*NB*NT*h^4+11116875*NB^2*Gr*R0^3*h-11116875*NB^2*Gr*R0*h^3+11116875*Br*NT^2*R0^3*h-11116875*Br*NT^2*R0*h^3+5336100*Br*NT^2*ln(h)*R0^4-5336100*Br*NT^2*ln(R0)*h^4+96049800*L^2*Br*NT^2*ln(R0)*h^2+5336100*Br*NT*R0^4*ln(r)*NB-96049800*L^2*Br*NT^2*ln(h)*h^2+96049800*L^2*Br*NT^2*ln(R0)*R0^2-1536796800*L^4*Br*NB*NT*ln(R0)-96049800*L^2*Br*NT^2*ln(h)*R0^2+24012450*Br*NT^2*ln(h)*R0^2*h^2+1536796800*L^4*Br*NB*NT*ln(h)+5336100*Br*NT^2*ln(h)*R0^3*h-24012450*Br*NT^2*ln(R0)*R0^2*h^2)*r^8/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-5138546688*L^4*Br*NB*NT*ln(h)*R0-5138546688*L^4*Br*NB*NT*ln(h)*h+5138546688*L^4*Br*NB*NT*ln(R0)*R0+5138546688*L^4*Br*NB*NT*ln(R0)*h+5138546688*L^4*Br*NT^2*ln(h)*R0+5138546688*L^4*Br*NT^2*ln(h)*h-5138546688*L^4*Br*NT^2*ln(R0)*R0-5138546688*L^4*Br*NT^2*ln(R0)*h+5138546688*L^4*Gr*NB^2*ln(h)*R0+5138546688*L^4*Gr*NB^2*ln(h)*h-5138546688*L^4*Gr*NB^2*ln(R0)*R0-5138546688*L^4*Gr*NB^2*ln(R0)*h-5138546688*L^4*Gr*NB*NT*ln(h)*R0-5138546688*L^4*Gr*NB*NT*ln(h)*h+5138546688*L^4*Gr*NB*NT*ln(R0)*R0+5138546688*L^4*Gr*NB*NT*ln(R0)*h)*r^7/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(341510400*L^2*Gr*NB*NT*ln(R0)*R0*h^3+1536796800*L^2*Gr*NB*NT*ln(R0)*R0^2*h^2-1536796800*L^2*Gr*NB*NT*ln(h)*R0^2*h^2-341510400*L^2*Gr*NB*NT*ln(h)*R0^3*h-341510400*L^2*Gr*NB*NT*ln(r)*R0*h^3+341510400*L^2*Gr*NB*NT*ln(r)*R0^3*h-12294374400*L^4*Gr*NB*NT*ln(R0)*R0*h+12294374400*L^4*Gr*NB*NT*ln(h)*R0*h+341510400*L^2*Br*NB*NT*ln(R0)*R0*h^3+1536796800*L^2*Br*NB*NT*ln(R0)*R0^2*h^2-1536796800*L^2*Br*NB*NT*ln(h)*R0^2*h^2-341510400*L^2*Br*NB*NT*ln(h)*R0^3*h-341510400*L^2*Br*NB*NT*ln(r)*R0*h^3+341510400*L^2*Br*NB*NT*ln(r)*R0^3*h+341510400*L^2*Gr*NB*NT*ln(R0)*h^4-341510400*L^2*Gr*NB*NT*ln(h)*R0^4-341510400*L^2*Gr*NB*NT*ln(r)*h^4+341510400*L^2*Gr*NB*NT*ln(r)*R0^4-341510400*L^2*Gr*NB^2*ln(R0)*R0*h^3-12294374400*L^4*Br*NB*NT*ln(R0)*R0*h+12294374400*L^4*Br*NB*NT*ln(h)*R0*h-1536796800*L^2*Gr*NB^2*ln(R0)*R0^2*h^2+1536796800*L^2*Gr*NB^2*ln(h)*R0^2*h^2+341510400*L^2*Gr*NB^2*ln(h)*R0^3*h+341510400*L^2*Gr*NB^2*ln(r)*R0*h^3-341510400*L^2*Gr*NB^2*ln(r)*R0^3*h-6147187200*L^4*Gr*NB*NT*ln(R0)*h^2-6147187200*L^4*Gr*NB*NT*ln(R0)*R0^2+6147187200*L^4*Gr*NB*NT*ln(h)*h^2+6147187200*L^4*Gr*NB*NT*ln(h)*R0^2+12294374400*L^4*Gr*NB^2*ln(R0)*R0*h-12294374400*L^4*Gr*NB^2*ln(h)*R0*h-341510400*L^2*Br*NT^2*ln(R0)*R0*h^3-1536796800*L^2*Br*NT^2*ln(R0)*R0^2*h^2+1536796800*L^2*Br*NT^2*ln(h)*R0^2*h^2+341510400*L^2*Br*NT^2*ln(h)*R0^3*h+341510400*L^2*Br*NT^2*ln(r)*R0*h^3-341510400*L^2*Br*NT^2*ln(r)*R0^3*h+341510400*L^2*Br*NB*NT*ln(R0)*h^4-341510400*L^2*Br*NB*NT*ln(h)*R0^4-341510400*L^2*Br*NB*NT*ln(r)*h^4+341510400*L^2*Br*NB*NT*ln(r)*R0^4+12294374400*L^4*Br*NT^2*ln(R0)*R0*h-12294374400*L^4*Br*NT^2*ln(h)*R0*h-6147187200*L^4*Br*NB*NT*ln(R0)*h^2-6147187200*L^4*Br*NB*NT*ln(R0)*R0^2+6147187200*L^4*Br*NB*NT*ln(h)*h^2+6147187200*L^4*Br*NB*NT*ln(h)*R0^2+626102400*L^2*Br*NT^2*R0^3*h-626102400*L^2*Br*NT^2*R0*h^3-626102400*L^2*Br*NB*NT*R0^4+626102400*L^2*Br*NB*NT*h^4+626102400*L^2*Gr*NB*NT*h^4-626102400*L^2*Gr*NB^2*R0*h^3+626102400*L^2*Gr*NB^2*R0^3*h-626102400*L^2*Gr*NB*NT*R0^4-6147187200*L^4*Gr*NB^2*ln(h)*h^2+6147187200*L^4*Gr*NB^2*ln(R0)*R0^2-6147187200*L^4*Gr*NB^2*ln(h)*R0^2-341510400*L^2*Br*NT^2*ln(R0)*h^4+341510400*L^2*Br*NT^2*ln(r)*h^4+341510400*L^2*Br*NT^2*ln(h)*R0^4-626102400*L^2*Gr*NB*NT*R0^3*h+626102400*L^2*Gr*NB*NT*R0*h^3-626102400*L^2*Br*NB*NT*R0^3*h+626102400*L^2*Br*NB*NT*R0*h^3+6147187200*L^4*Br*NT^2*ln(R0)*h^2-341510400*L^2*Br*NT^2*ln(r)*R0^4+6147187200*L^4*Br*NT^2*ln(R0)*R0^2-6147187200*L^4*Br*NT^2*ln(h)*R0^2-6147187200*L^4*Br*NT^2*ln(h)*h^2-341510400*L^2*Gr*NB^2*ln(R0)*h^4-393419980800*c2*ln(h)*ln(r)*L^2*NB+393419980800*c2*ln(R0)*ln(r)*L^2*NB-341510400*L^2*Gr*NB^2*ln(r)*R0^4+341510400*L^2*Gr*NB^2*ln(r)*h^4+341510400*L^2*Gr*NB^2*ln(h)*R0^4+6147187200*L^4*Gr*NB^2*ln(R0)*h^2-626102400*L^2*Gr*NB^2*h^4+626102400*L^2*Br*NT^2*R0^4-626102400*L^2*Br*NT^2*h^4-393419980800*c1*ln(h)*L^2*NB+327849984000*c2*ln(h)*L^2*NB+98354995200*L^2*p*NB*ln(h)+393419980800*c1*ln(R0)*L^2*NB-327849984000*c2*ln(R0)*L^2*NB-98354995200*L^2*p*NB*ln(R0)+626102400*L^2*Gr*NB^2*R0^4)*r^6/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-3540779827200*c3*L^2*NB*ln(h)+3540779827200*c3*L^2*NB*ln(R0)+12294374400*L^4*Br*NT^2*ln(h)*R0^3*h+55324684800*L^4*Br*NT^2*ln(h)*R0^2*h^2-55324684800*L^4*Br*NT^2*ln(R0)*R0^2*h^2-12294374400*L^4*Br*NT^2*ln(R0)*R0*h^3-12294374400*L^4*Gr*NB^2*ln(r)*R0^3*h+12294374400*L^4*Gr*NB^2*ln(r)*R0*h^3+12294374400*L^4*Gr*NB^2*ln(h)*R0^3*h+55324684800*L^4*Gr*NB^2*ln(h)*R0^2*h^2-55324684800*L^4*Gr*NB^2*ln(R0)*R0^2*h^2-12294374400*L^4*Gr*NB^2*ln(R0)*R0*h^3+12294374400*L^4*Gr*NB*NT*ln(r)*R0^4-12294374400*L^4*Gr*NB*NT*ln(r)*h^4-12294374400*L^4*Gr*NB*NT*ln(h)*R0^4+12294374400*L^4*Gr*NB*NT*ln(R0)*h^4+12294374400*L^4*Br*NB*NT*ln(r)*R0^4-12294374400*L^4*Br*NB*NT*ln(r)*h^4-12294374400*L^4*Br*NB*NT*ln(h)*R0^4+12294374400*L^4*Br*NB*NT*ln(R0)*h^4-12294374400*L^4*Br*NT^2*ln(r)*R0^3*h+12294374400*L^4*Br*NT^2*ln(r)*R0*h^3-18441561600*L^4*Gr*NB*NT*R0^3*h+18441561600*L^4*Gr*NB*NT*R0*h^3-18441561600*L^4*Br*NB*NT*R0^3*h+18441561600*L^4*Br*NB*NT*R0*h^3+12294374400*L^4*Br*NB*NT*ln(R0)*R0*h^3+12294374400*L^4*Gr*NB*NT*ln(r)*R0^3*h-12294374400*L^4*Gr*NB*NT*ln(r)*R0*h^3-12294374400*L^4*Gr*NB*NT*ln(h)*R0^3*h-55324684800*L^4*Gr*NB*NT*ln(h)*R0^2*h^2+55324684800*L^4*Gr*NB*NT*ln(R0)*R0^2*h^2+12294374400*L^4*Gr*NB*NT*ln(R0)*R0*h^3-18441561600*L^4*Gr*NB^2*R0*h^3+18441561600*L^4*Gr*NB*NT*h^4+18441561600*L^4*Br*NB*NT*h^4-18441561600*L^4*Br*NB*NT*R0^4-18441561600*L^4*Br*NT^2*R0*h^3+18441561600*L^4*Br*NT^2*R0^3*h-12294374400*L^4*Gr*NB^2*ln(R0)*h^4-14163119308800*L^4*c2*ln(r)*NB*ln(h)+14163119308800*L^4*c2*ln(r)*NB*ln(R0)-3540779827200*c4*ln(r)*L^2*NB*ln(h)+3540779827200*c4*ln(r)*L^2*NB*ln(R0)-18441561600*L^4*Gr*NB*NT*R0^4+18441561600*L^4*Gr*NB^2*R0^3*h-12294374400*L^4*Br*NT^2*ln(r)*R0^4+12294374400*L^4*Br*NT^2*ln(r)*h^4+12294374400*L^4*Br*NT^2*ln(h)*R0^4-12294374400*L^4*Br*NT^2*ln(R0)*h^4-12294374400*L^4*Gr*NB^2*ln(r)*R0^4+12294374400*L^4*Gr*NB^2*ln(r)*h^4+12294374400*L^4*Gr*NB^2*ln(h)*R0^4+55324684800*L^4*Br*NB*NT*ln(R0)*R0^2*h^2-55324684800*L^4*Br*NB*NT*ln(h)*R0^2*h^2-12294374400*L^4*Br*NB*NT*ln(h)*R0^3*h-12294374400*L^4*Br*NB*NT*ln(r)*R0*h^3+12294374400*L^4*Br*NB*NT*ln(r)*R0^3*h+18441561600*L^4*Gr*NB^2*R0^4-18441561600*L^4*Gr*NB^2*h^4+18441561600*L^4*Br*NT^2*R0^4-3540779827200*L^4*p*NB*ln(R0)+5311169740800*c4*ln(h)*L^2*NB-5311169740800*c4*ln(R0)*L^2*NB-18441561600*L^4*Br*NT^2*h^4-14163119308800*L^4*c1*NB*ln(h)+7081559654400*L^4*c2*ln(h)*NB+3540779827200*L^4*p*NB*ln(h)+14163119308800*L^4*c1*NB*ln(R0)-7081559654400*L^4*c2*ln(R0)*NB)*r^4/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-226609908940800*L^6*c2*ln(r)*NB*ln(h)+226609908940800*L^6*c2*ln(r)*NB*ln(R0)-226609908940800*L^6*c1*NB*ln(h)+226609908940800*L^6*c1*NB*ln(R0)-56652477235200*L^4*c4*ln(r)*NB*ln(h)+56652477235200*L^4*c4*ln(r)*NB*ln(R0)-56652477235200*L^4*c3*NB*ln(h)+56652477235200*L^4*c4*ln(h)*NB+56652477235200*L^4*c3*NB*ln(R0)-56652477235200*L^4*c4*ln(R0)*NB)*r^2/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-226609908940800*L^6*c4*ln(r)*NB*ln(h)+226609908940800*L^6*c4*ln(r)*NB*ln(R0)-226609908940800*L^6*c3*NB*ln(h)+226609908940800*L^6*c3*NB*ln(R0))/(L^6*NB*(ln(h)-ln(R0)))):

NULL


 

Download vel.mw

 

can maple code saved into database for self modifying easily?

self modifying , metaprogramming , database, snapshot, blockchain for code integrity etc

LetterA_Axes_query.mws

  The attached shows animation of the letter A. The animation works fine, and in the plot diagram of the large letter A, the axes are shown.  However, in the second plot (animated), the axes are not being shown, despite clicking on Axes in the animation.  The choices here are Boxed, Framed, Normal or None.

  In the Maple 7 documentation on Axes it states "From the Axes menu choose Ranges...."   ...but I can't see Ranges. 

Any reasons for this?

Hi all, since I cannot use Latex over here I try to formulate as good as possible. Suppose we have the standard integral from a to b of a function f(x), which is equal to:

h * sum (k=1 to N) [ck f(a+kh)] +O(hp), where h=(b-a)/N+1, an p(N)>= N+1;

Would it be possible to write a procedure to evaluate the coefficients ck , k=1,2,3..N and P(N)

Perhaps a stupid question, because I don't know if it is possible.

Best wishes, Math

First 846 847 848 849 850 851 852 Last Page 848 of 2216