Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I think I've seen this somewhere in Mapleprimes but I can't locate it. How do you pull the type and number of operations from an equation? 

a:=3*x^3-5*x^2+3*y

                   " *,^,-,*,^,+,* "

 

If i have made a component invisible for asthetic reasons, (eg a text box) how can i undo this to edit its contents?

How can i export a plot using open maple in java?

engine.evaluate("Export(\"D:\\MyGraph.jpeg\", plot(sin(x)));");

and 

engine.evaluate("exportplot(\"D:\\MyGraph.jpeg\", plot(sin(x)));");

doesn't work,

exception - com.maplesoft.externalcall.MapleException: Error, (in Export) exported file D:MyGraph.jpeg could not be createdError, plotting was not implemented by the application

 

Thanks.

1. This seems wrong:

applyrule(x::symbol+y::symbol = 0, a+b);
                             a + b

2. Should these two match f(a)?

applyrule((h::anything)(a) = 0, f(a));
                              f(a)
applyrule(x::f(x1::anything) = 0, f(a));
                              f(a)

3. hypergeom will give an error if the arguments are not lists, so how to write a pattern that will match hypergeom(anything, anything, a)? This works but is... skittish:

applyrule('''hypergeom'''(x1::anything, x2::anything, a) = 0, hypergeom([], [], a));
                               0

How do i find the distance between the quasi cyclic codes in maple ?

how do i solve a system of PDE's with variable coeffiecients in Maple?

I have some elliptic curve with some points on it:

I would like to give the points some names, P, etc., but cannot figure out how to do that probably simple task. The help pages ?plot,options and ?pointplot do not seem to cover it; I may be mistaken, of course. The above plot is the result of the following code:

curve := y^2 = x^3 - 43*x + 166;
display([
   plot(+sqrt(rhs(curve)),x = -10..12),
   plot(-sqrt(rhs(curve)),x = -10..12),
   pointplot([[3,8],[-5,16],[11,32],[3,-8]],symbol = solidbox)
]);

Update: Using, among other things, the textplot command as suggested below, here, just for the fun of it, a plot illustrating the group 'addition' of points on an elliptic curve, the three lines being tangents to the curve:

I really need to factor minus one from -x-yI. I can do -[x+yI] and -{x+yI}. I cannot do -(x+yI).
Well, i really don't have these numbers exactly. They are produced within a Maple program.
I have something like ab, where a is the number x+yI. The little trick -`a`b will not work because
of the rather involved form of "a".
Thank you!

mapleatha

 

 

what package I need to add in order to use commands named "Drawmatrix, Translatemat and Transform" ? I add package named Lamp but it is not working. I have maple 15. Please try to respond as soon as possible because its urgent.

 

Thank you

Hello. Please help me to correct the error. Thank you

lambda := proc (r) options operator, arrow; 3*r end proc;

proc (r) options operator, arrow; 3*r end proc

(1)

mu := proc (r) options operator, arrow; 4*r end proc;

proc (r) options operator, arrow; 4*r end proc

(2)

r1 := 5;

5

(3)

r2 := 3;

3

(4)

omega := 7;

7

(5)

alpha := 1;

1

(6)

beta := 1;

1

(7)

rho := 1;

1

(8)

n := 1;

1

(9)

rho1 := 4;

4

(10)

A := 8;

8

(11)

f11 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc

(12)

f12 := proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

(13)

f13 := proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc

(14)

NULL

f14 := proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc

(15)

f15 := proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc

(16)

f16 := proc (r) options operator, arrow; -n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc;

proc (r) options operator, arrow; -n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc

(17)

f17 := proc (r) options operator, arrow; -alpha*(diff(lambda(r), r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(diff(lambda(r), r))*r^2 end proc

(18)

f21 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc

(19)

f22 := proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

(20)

f23 := proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc

(21)

f24 := proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc

(22)

f25 := proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc

(23)

f26 := proc (r) options operator, arrow; n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc;

proc (r) options operator, arrow; n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc

(24)

f27 := proc (r) options operator, arrow; alpha*(diff(lambda(r), r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(diff(lambda(r), r))*r^2 end proc

(25)

f31 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(26)

f32 := proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc

(27)

f33 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(28)

f34 := proc (r) options operator, arrow; -n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc;

proc (r) options operator, arrow; -n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc

(29)

f35 := proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc

(30)

f36 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(31)

f41 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(32)

f42 := proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc

(33)

f43 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(34)

f44 := proc (r) options operator, arrow; n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc;

proc (r) options operator, arrow; n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc

(35)

f45 := proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc

(36)

f46 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(37)

f51 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(38)

f52 := proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc

(39)

f53 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(40)

f54 := proc (r) options operator, arrow; -alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc;

proc (r) options operator, arrow; -alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc

(41)

f55 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(42)

f56 := proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc

(43)

f61 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(44)

f62 := proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc

(45)

f63 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(46)

f64 := proc (r) options operator, arrow; alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc;

proc (r) options operator, arrow; alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc

(47)

f65 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(48)

f66 := proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc

(49)

``

DJ := proc (x, n) options operator, arrow; diff(BesselJ(n, x), x) end proc;

proc (x, n) options operator, arrow; diff(BesselJ(n, x), x) end proc

(50)

DY := proc (x, n) options operator, arrow; diff(BesselY(n, x), x) end proc;

proc (x, n) options operator, arrow; diff(BesselY(n, x), x) end proc

(51)

``

g11 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc

(52)

g12 := proc (r) options operator, arrow; -(lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; -(lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc

(53)

````

g13 := proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DJ(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc;

proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DJ(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc

(54)

g14 := proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DY(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc;

proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DY(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc

(55)

g15 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc

(56)

BesselY(0, 5)-(1/5)*BesselY(1, 5)

(57)

g16 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc

(58)

 

g17 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

(59)

g18 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

(60)

q1 := proc (r) options operator, arrow; piecewise(`mod`(n, 2) = 0, 2*i^n*A*omega*rho1/(Pi*beta*r1), `mod`(n, 2) <> 0, 0) end proc

proc (r) options operator, arrow; piecewise(`mod`(n, 2) = 0, 2*i^n*A*omega*rho1/(Pi*beta*r1), `mod`(n, 2) <> 0, 0) end proc

(61)

g21 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc

(62)

g22 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc

(63)

g23 := proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DY(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc;

proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DY(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc

(64)

g24 := proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DJ(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc;

proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DJ(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc

(65)

g25 := proc (r) options operator, arrow; n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc;

proc (r) options operator, arrow; n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc

(66)

g26 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc

(67)

g27 := proc (r) options operator, arrow; alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

(68)

g28 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

(69)

q2 := proc (r) options operator, arrow; piecewise(`mod`(n, 2) <> 0, 2*i^n*A*omega*rho1/(i*Pi*beta*r1), `mod`(n, 2) = 0, 0) end proc

proc (r) options operator, arrow; piecewise(`mod`(n, 2) <> 0, 2*i^n*A*omega*rho1/(i*Pi*beta*r1), `mod`(n, 2) = 0, 0) end proc

(70)

g31 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(71)

g32 := proc (r) options operator, arrow; -n*mu(r)/r end proc;

proc (r) options operator, arrow; -n*mu(r)/r end proc

(72)

g33 := proc (r) options operator, arrow; -mu(r)/r end proc;

proc (r) options operator, arrow; -mu(r)/r end proc

(73)

g41 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(74)

g42 := proc (r) options operator, arrow; n*mu(r)/r end proc;

proc (r) options operator, arrow; n*mu(r)/r end proc

(75)

g43 := proc (r) options operator, arrow; -mu(r)/r end proc;

proc (r) options operator, arrow; -mu(r)/r end proc

(76)

g51 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(77)

g52 := proc (r) options operator, arrow; -alpha*mu(r) end proc;

proc (r) options operator, arrow; -alpha*mu(r) end proc

(78)

g61 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(79)

g62 := proc (r) options operator, arrow; alpha*mu(r) end proc;

proc (r) options operator, arrow; alpha*mu(r) end proc

(80)

``

sys := (diff(x1(r), `$`(r, 2)))*f11(r)+(diff(x1(r), r))*f12(r)+(diff(y2(r), r))*f13(r)+(diff(y3(r), y3))*f14(r)+x1(r)*f15(r)+y2(r)*f16(r)+y3(r)*f17(r) = 0, (diff(y1(r), `$`(r, 2)))*f21(r)+(diff(y1(r), r))*f22(r)+(diff(x2(r), `$`(r, 1)))*f23(r)+(diff(x3(r), r))*f24(r)+y1(r)*f25(r)+x2(r)*f26(r)+x3(r)*f27(r) = 0, (diff(x2(r), `$`(r, 2)))*f31(r)+(diff(y1(r), r))*f32(r)+(diff(x2(r), `$`(r, 1)))*f33(r)+y1(r)*f34(r)+x2(r)*f35(r)+x3(r)*f36(r) = 0, (diff(y2(r), `$`(r, 2)))*f41(r)+(diff(x1(r), r))*f42(r)+(diff(y2(r), r))*f43(r)+x1(r)*f44(r)+y2(r)*f45(r)+y3(r)*f46(r) = 0, (diff(x3(r), `$`(r, 2)))*f51(r)+(diff(y1(r), r))*f52(r)+(diff(x3(r), r))*f53(r)+y1(r)*f54(r)+x2(r)*f55(r)+x3(r)*f56(r) = 0, (diff(y3(r), `$`(r, 2)))*f61(r)+(diff(x1(r), r))*f62(r)+(diff(y3(r), r))*f63(r)+x1(r)*f64(r)+y2(r)*f65(r)+y3(r)*f66(r) = 0;

11*(diff(diff(x1(r), r), r))*r^3+(diff(x1(r), r))*[22*r^2]-7*(diff(y2(r), r))*r^2+x1(r)*[-4*(3+r^2)*r+49*r^2]+y2(r)*[12*r]-3*y3(r)*r^2 = 0, 11*(diff(diff(y1(r), r), r))*r^3+(diff(y1(r), r))*[22*r^2]+7*(diff(x2(r), r))*r^2+7*(diff(x3(r), r))*r^3+y1(r)*[-4*(3+r^2)*r+49*r^2]+x2(r)*[-12*r]+3*x3(r)*r^2 = 0, 4*(diff(diff(x2(r), r), r))*r^3-7*(diff(y1(r), r))*r^2+8*(diff(x2(r), r))*r^2-19*y1(r)*r+x2(r)*[-7*r-4*(3+r^2)*r+49*r^2]-7*x3(r)*r^2 = 0, 4*(diff(diff(y2(r), r), r))*r^3+7*(diff(x1(r), r))*r^2+8*(diff(y2(r), r))*r^2+19*x1(r)*r+y2(r)*[-7*r-4*(3+r^2)*r+49*r^2]-7*y3(r)*r^2 = 0, 4*(diff(diff(x3(r), r), r))*r^3-7*(diff(y1(r), r))*r^3+8*(diff(x3(r), r))*r^2+y1(r)*[-11*r^2]-7*x2(r)*r^2+x3(r)*[-4*(1+2*r^2)*r-3*r^3+49*r^2] = 0, 4*(diff(diff(y3(r), r), r))*r^3+7*(diff(x1(r), r))*r^3+8*(diff(y3(r), r))*r^2+x1(r)*[11*r^2]-7*y2(r)*r^2+y3(r)*[-4*(1+2*r^2)*r-3*r^3+49*r^2] = 0

(81)

a11 := (D(x1))(r1);

(D(x1))(5)

(82)

a12 := (D(y1))(r1);

(D(y1))(5)

(83)

a21 := (D(x2))(r1);

(D(x2))(5)

(84)

a22 := (D(y2))(r1);

(D(y2))(5)

(85)

a31 := (D(x3))(r1);

(D(x3))(5)

(86)

a32 := (D(y3))(r1);

(D(y3))(5)

(87)

Inits := a11*evalf(g11(r1))+a12*evalf(g12(r1))+x1(r1)*evalf(g13(r1))+y1(r1)*evalf(g14(r1))+x2(r1)*evalf(g15(r1))+y2(r1)*evalf(g16(r1))+x3(r1)*evalf(g17(r1))+y3(r1)*evalf(g18(r1)) = evalf(q1(r1)), a11*evalf(g21(r1))+a12*evalf(g22(r1))+x1(r1)*evalf(g23(r1))+y1(r1)*evalf(g24(r1))+x2(r1)*evalf(g25(r1))+y2(r1)*evalf(g26(r1))+x3(r1)*evalf(g27(r1))+y3(r1)*evalf(g28(r1)) = evalf(q2(r1)), a21*g31(r1)+y1(r1)*g32(r1)+x2(r1)*g33(r1) = 0, a22*g41(r1)+x1(r1)*g42(r1)+y2(r1)*g43(r1) = 0, a31*g51(r1)+y1(r1)*g52(r1) = 0, a32*g61(r1)+x1(r1)*g62(r1) = 0, x1(r2) = 0, x2(r2) = 0, x3(r2) = 0, y1(r2) = 0, y2(r2) = 0, y3(r2) = 0;

-6.164451908*(D(x1))(5)+18.59496397*(D(y1))(5)-64.54175380*x1(5)-27.96690534*y1(5)+1.014270762*x2(5)+.3362428313*y2(5)+5.071353808*x3(5)+1.681214157*y3(5) = 0., -18.59496397*(D(x1))(5)-6.164451908*(D(y1))(5)+27.96690534*x1(5)+64.54175380*y1(5)-.3362428313*x2(5)+1.014270762*y2(5)-1.681214157*x3(5)+5.071353808*y3(5) = 28.52056579, 20*(D(x2))(5)-4*y1(5)-4*x2(5) = 0, 20*(D(y2))(5)+4*x1(5)-4*y2(5) = 0, 20*(D(x3))(5)-20*y1(5) = 0, 20*(D(y3))(5)+20*x1(5) = 0, x1(3) = 0, x2(3) = 0, x3(3) = 0, y1(3) = 0, y2(3) = 0, y3(3) = 0

(88)

dde := dsolve({Inits, sys}, numeric)

Error, (in fproc) unable to store '[0.183848448391796e-1]+0.389981557194716e-2' when datatype=float[8]

 

NULL


 

Download ODU.mw

 

Dear maple experts,

as far as I know premultiplication of matrix A with matrix B is only possible if the number of columns of A is equal to the number of rows of B (matrices are conformable). Not so in Maple: strange.mw

I expected an error message, so I would receive feedback that I made an error.

what's going on?

kind regards,

Harry Garst

 

typematch({2}, set({x :: integer, y :: even}), 's'), s;

 

Hello dear!

Hope everyone is fine. I am facing problem to fins the inverse transfrom in the attached file. Please find the attachment and fix the problem. Thanks in advance

Help.mw

Dears,

Let C a square in the n-diemnsional Euclidean space. Somebody know how to divide C into 2^{n} congruent subsquares? 

For instance, for n=2 and  say C:=[0,1]x[0,1], the unit closed square, we will obtain the 2^{2}=4 subsquares [0,1/4]x[0,1/4], [0,1/4]x[1/2], [1/2,1]x[0,1/4] and [1/2,1]x[1/2,1].  

Many thanks in advance for your comments!!

Hello everybody!

I have Z which is a function of (b,p)! and two parameters g and d :

Z=p*b*d+2*g^p^2*b^2-2*sqrt(p*g*(b-1)*(b*g*p-b*p-g*p-4*d+p))

I want to plot Z vs. g (1<g<4) and explore with d, note that in plot i want Z to be maximum (it is obvious that we must find b and p optimal and then find Z optimal). in maximization consider we have this constraints: {b <= 1, 1-2*d/(p*(sqrt(g)+1)) <= b}

thank you in advance for your help!

First 889 890 891 892 893 894 895 Last Page 891 of 2215