Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

The following image shows a .mw file on two monitors (1 = right side) (2 = left side).  

Distortion occurs when I try to drag-and-drop an open file from monitor 1 to monitor 2.  Transfer from one monitor to another works fine on all other applications (.pdf, .docx, web stuff, graphic files like .png, and .xlsx.  Only .mw files distort when I try to open them or move them to monitor 2.  I was able to move, open, etc. any .mw file for over a year, then a couple of days ago the files started to distort.  I had a 32-bit version of Maple (Maple 2015.2 build ID 1097895—deleted it.  Also deleted and reinstalled Maple 2015.0, build 1022128.  I checked and updated my video card, updated the 2-monitor settings on Windows 7.  All this to no avail, the Maple 2015.0 program works on monitor 1, but it can not be opened or dragged-and-dropped to monitor 2.

Help, advice, suggestions welcomed—many thanks in advance.

Les

 

Hello.

 

I have been trying to create a code to solve a structure by using FEM, but I keep getting an error that stops me from moving on.

 

Everytime I run my code, Maple gives me the error in the Title of my question:
"Error, number of indices exceeds rank"

 

Unfortunately I can't find any help in Maplesoft support for such error, and I need immediate help for that.

Can someone help me with that? Should I post my entire code?

Thanks!

Hi everyone, 

I often get the error 'cannot save points as a float matrix' while I'm trying to plot with the spacecurve command.

loodl2 is a 4 component vector, loodl2c is the 3 component variant.

loodl2:=T1.<loodl,1>: loodl2c:=<loodl2[1], loodl2[2], loodl2[3]>
loodlpl:=spacecurve(loodl2c, k=-10..10, color=red):

also with this syntax:
loodl2c:=loodl2[1..3]

and this syntax:

l2c1:= 2*k: l2c2:=0, l2c3:=8-k:
spacecurve([l2c1, l2c2, l2c3], k=-10..10, color=red):
Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

It will only plot if I do this:
loodl2c:=<2*k, 0, 8-k>
Can someone help me?
 

I am trying to use the element properties Maple has in its ScientificConstants package. I am running into problems with the density of gaseous elements:

with(ScientificConstants);

Units:-UsingSystem(); # returns SI as expected

GetValue(Element('Si',density)); # returns 2329.0000 [kg/m^3] which is 2.329 g/cm^3, which is correct

GetValue(Element('H',density(gas))); # returns 88 [kg/m^3], which is incorrect.

PDG gives the density of hydrogen as 8.376E-5 g/cm^3, which is 0.08376 kg/m^3.  

Even more crazy for Krypton:

GetValue(Element('Kr',density(gas))); # returns 3677.000 [kg/m^3]. Heavy little buggers, these Kypton atoms! Should be 3.486 in the same units.

What gives? Am I missing something here?

Mac Dude

 

 

What is the meaning of the "0" in the series expansion

series(x/(-x2-x+1), x = 0); ( this is the Maple command)
                   
              x + x2  + 2 x3  + 3 x4 + 5 x5  + O(x6)  This is the results

This is use in Maple I've seen quite a bit for series. I assume the the series continues on. But I am not sure

Also is there any listing of what some of the symbols that maple uses???
 

Is there a way to specify different colors for different output variables? For example, if x,y, and z appear in the entire document as variables, I want x to be red, y to be blue, and z to be green whenever an output is displayed.

Thanks

hi..how i can rewrite section of this code as another form i,e ''for section''

I have a lot of line as this and runnig cise is time consuming.

is there another way to write this section in order to the runtime of the program is reduced??

thanks

for.mw
 

restart;

with(LinearAlgebra):

with(VectorCalculus):

#Digits:=5:
k:=6:

l:=0:

h:=1:

m:=4:

n:=4:

l1:=2*h:

l2:=2*h:

N:=0.5:

nu:=.3:

E_m:=70e9:

E_c:=380e9:

rho_m:=2702:

rho_c:=3800:

lambda_m:=nu*E_m/((1+nu)*(1-2*nu)):

lambda_c:=nu*E_c/((1+nu)*(1-2*nu)):

mu_m:=E_m/(2*(1+nu)):

mu_c:=E_c/(2*(1+nu)):

with(orthopoly):

for i from 0 to 5 do:
L(i):=sqrt((2*i+1)/2)*P(i,z):
end do:

Z:=rho_m+(rho_c-rho_m)*((1/2)+(z/h))^N;

2702+1098*(1/2+z)^.5

(1)

U:=lambda_m+(lambda_c-lambda_m)*((1/2)+(z/h))^N;

0.4038461538e11+0.1788461538e12*(1/2+z)^.5

(2)

S:=mu_m+(mu_c-mu_m)*((1/2)+(z/h))^N;

0.2692307692e11+0.1192307692e12*(1/2+z)^.5

(3)

d:=Matrix([[0,0,0,0,0,0,0,0],[sqrt(3),0,0,0,0,0,0,0],[0,sqrt(15),0,0,0,0,0,0],[sqrt(7),0,sqrt(35),0,0,0,0,0],[0,sqrt(27),0,sqrt(63),0,0,0,0],[sqrt(11),0,sqrt(55),0,sqrt(99),0,0,0],[0,sqrt(39),0,sqrt(91),0,sqrt(143),0,0],[sqrt(15),0,sqrt(75),0,sqrt(135),0,sqrt(195),0]]);

d := Matrix(8, 8, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 3^(1/2), (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 15^(1/2), (3, 3) = 0, (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (4, 1) = 7^(1/2), (4, 2) = 0, (4, 3) = 35^(1/2), (4, 4) = 0, (4, 5) = 0, (4, 6) = 0, (4, 7) = 0, (4, 8) = 0, (5, 1) = 0, (5, 2) = 3*3^(1/2), (5, 3) = 0, (5, 4) = 3*7^(1/2), (5, 5) = 0, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (6, 1) = 11^(1/2), (6, 2) = 0, (6, 3) = 55^(1/2), (6, 4) = 0, (6, 5) = 3*11^(1/2), (6, 6) = 0, (6, 7) = 0, (6, 8) = 0, (7, 1) = 0, (7, 2) = 39^(1/2), (7, 3) = 0, (7, 4) = 91^(1/2), (7, 5) = 0, (7, 6) = 143^(1/2), (7, 7) = 0, (7, 8) = 0, (8, 1) = 15^(1/2), (8, 2) = 0, (8, 3) = 5*3^(1/2), (8, 4) = 0, (8, 5) = 3*15^(1/2), (8, 6) = 0, (8, 7) = 195^(1/2), (8, 8) = 0})

(4)

``

``

e2 := 0;

0

 

-0.3192307692e12*W(1)+0.4396880662e12*W(3)-0.1474586301e12*W(5)-0.9235575669e11*W(2)+0.1979090105e12*W(4)

(5)

``


 

Download for.mw

 

hi...

how I can dsolve this differential equations. parameter p is unkown.

I want to gain w(x) and u(x) and psi(x) and p.

thanks

sade.mw
 

restart; eq1 := (diff(psi(x), x))^2+(diff(u(x), x)+(8*(1/2))*(diff(w(x), x))^2)((diff(psi(x), x))^2)+3*(diff(w(x), x, x))+5*(diff(w(x), x, x))*(diff(psi(x), x))-7*(diff(u(x), x, x, x)+(8*(1/2))*(diff(w(x), x, x))^2+(3/2)*(diff(w(x), x, x, x))*(diff(w(x), x)))+3 = p

(diff(psi(x), x))^2+(diff(u(x), x))((diff(psi(x), x))^2)+4*(diff(w(x), x))((diff(psi(x), x))^2)^2+3*(diff(diff(w(x), x), x))+5*(diff(diff(w(x), x), x))*(diff(psi(x), x))-7*(diff(diff(diff(u(x), x), x), x))-28*(diff(diff(w(x), x), x))^2-(21/2)*(diff(diff(diff(w(x), x), x), x))*(diff(w(x), x))+3 = p

(1)

eq2 := (51-31)(diff(psi(x), x, x))+(52-2)(diff(w(x), x, x, x))+8*(diff(psi(x), x, x, x, x))-7*(diff(w(x), x)-psi(x)) = 0

70+8*(diff(diff(diff(diff(psi(x), x), x), x), x))-7*(diff(w(x), x))+7*psi(x) = 0

(2)

eq3 := 4*(diff(w(x), x, x)-(diff(psi(x), x)))+(23+11)(diff(psi(x), x, x, x))+(14+12)*(diff(w(x), x, x, x, x)) = 0

4*(diff(diff(w(x), x), x))-4*(diff(psi(x), x))+34+26*(diff(diff(diff(diff(w(x), x), x), x), x)) = 0

(3)

dsys3 := {eq1, eq2, eq3, psi(0) = 0, psi(1) = 0, u(0) = 0, u(1) = 0, w(0) = 0, w(1) = 0, ((D@@1)(psi))(0) = 0, ((D@@1)(psi))(1) = 0, ((D@@1)(w))(0) = 0, ((D@@1)(w))(1) = 0}; dsol5 := dsolve(dsys3, 'maxmesh' = 1200, numeric, abserr = .1, output = array([.5]))

Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 12, got 10

 

dsolve({eq2, eq3}, {psi(x), w(x)}):

with(PDEtools, casesplit, declare);

[casesplit, declare]

(4)

 


 

Download sade.mw

 

hi...

how i can dsolve this differential equations and obtain w(x) and U(x) and phi(x) analytical or numerically?

thanks

zah.mw
 

``

restart; L := 100; h := 1; eq1 := 1130*(diff(U(x), x, x))+1130*(diff(W(x), x))*(diff(W(x), x, x))+1130*(diff(U(x), x, x, x, x))

1130*(diff(diff(U(x), x), x))+1130*(diff(W(x), x))*(diff(diff(W(x), x), x))+1130*(diff(diff(diff(diff(U(x), x), x), x), x))

(1)

eq2 := 1130*(diff(W(x), x))*(diff(U(x), x, x)+(diff(W(x), x))*(diff(W(x), x, x)))+(diff(W(x), x, x))*(1130*(diff(U(x), x))+565*(diff(W(x), x))^2-2.2*(int(diff(varphi(z), z), z = -5/2 .. 5/2)))+(14125/6)*(diff(W(x), x, x, x, x, x, x))+(10405/6)*(diff(W(x), x, x, x, x))+10

1130*(diff(W(x), x))*(diff(diff(U(x), x), x)+(diff(W(x), x))*(diff(diff(W(x), x), x)))+(diff(diff(W(x), x), x))*(1130*(diff(U(x), x))+565*(diff(W(x), x))^2-2.2*(int(diff(varphi(z), z), z = -5/2 .. 5/2)))+(14125/6)*(diff(diff(diff(diff(diff(diff(W(x), x), x), x), x), x), x))+(10405/6)*(diff(diff(diff(diff(W(x), x), x), x), x))+10

(2)

eq3 := diff(varphi(z), z, z)-.35*(diff(W(x), x, x))

diff(diff(varphi(z), z), z)-.35*(diff(diff(W(x), x), x))

(3)

dsys3 := {eq1, eq2, eq3, U(0) = 0, U(L) = 0, W(0) = 0, W(L) = 0, `&varphi;`(-(1/2)*h) = 0, `&varphi;`(-(1/2)*h) = 2, ((D@@1)(W))(0) = 0, ((D@@1)(W))(L) = 0, ((D@@2)(W))(0) = 0, ((D@@2)(W))(L) = 0}; dsol5 := dsolve(dsys3, 'maxmesh' = 1200, numeric, abserr = .1, output = array([.5]))

Error, (in dsolve/numeric/process_input) input system must be an ODE system, got independent variables {x, z}

 

``


 

Download zah.mw

 

Hi MaplePrimes,

another_recursive_sequence.mw

another_recursive_sequence.pdf

These two files have the same content.  One is a .pdf and the other is a Maple Worksheet.  I explore integer sequences of the form - 

a(r) = c*a(r-1)+d*a(r-2) with a(1) and a(2) given.

Some of these sequences are in (the Online Encyclopedia of Integer Sequences) OEIS.org and some are not.  If we restrict c to 1 and assume that a(1)=1 and a(2) = 2 we have the parameter d remaining.  See additional webpage - 

https://sites.google.com/site/recrusivefunction/

Let me know if you like the code.

Regards,

Matt

 

> {w = -4*mu, a[-1] = -12*mu/(a+b), a[0] = a[0], a[1] = 0, b[-1] = 0, b[0] = 0, b[1] = 0};
  /                     12 mu                                              
 { w = -4 mu, a[-1] = - -----, a[0] = a[0], a[1] = 0, b[-1] = 0, b[0] = 0,
  \                     a + b                                              

           \
   b[1] = 0 }
           /
> restart;
>
> w := -4*mu;
                                    -4 mu
> a[-1] := -12*mu/(a+b);
                                     12 mu
                                   - -----
                                     a + b
> a[0] := a[0];
                                    a[0]
> a[1] := 0;
                                      0
> b[-1] := 0;
                                      0
> b[0] := 0;
                                      0
> b[1] := 0;
                                      0
> xi := x+w*t;
                                 x - 4 mu t
> P := sqrt(mu)*tan(A-sqrt(mu)*xi);
                      (1/2)    /      (1/2)             \
                    mu      tan\A - mu      (x - 4 mu t)/
> u := a[0]+a[1]*P/(1+lambda*P)+a[-1]*(1+lambda*P)/P+b[0]*sqrt(sigma*(1+P^2/mu))/P+b[1]*sqrt(sigma*(1+P^2/mu))+b[-1]*sqrt(sigma*(1+P^2/mu))/P^2;
                (1/2) /             (1/2)    /      (1/2)             \\
           12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//
    a[0] - -------------------------------------------------------------
                                  /      (1/2)             \            
                       (a + b) tan\A - mu      (x - 4 mu t)/            
> Diff(u, x, t)+a*(Diff(u, x))*(Diff(u, x, y))+b*(Diff(u, `$`(x, 2)))*(Diff(u, y))+Diff(u, `$`(x, 3), y);
/   2   /            (1/2) /             (1/2)    /      (1/2)             \\\
|  d    |       12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//|
|------ |a[0] - -------------------------------------------------------------|
| dt dx |                              /      (1/2)             \            |
\       \                   (a + b) tan\A - mu      (x - 4 mu t)/            /

  \     /    /    
  |     | d  |    
  | + a |--- |a[0]
  |     | dx |    
  /     \    \    

          (1/2) /             (1/2)    /      (1/2)             \\\\ /   2   /
     12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//|| |  d    |
   - -------------------------------------------------------------|| |------ |
                            /      (1/2)             \            || | dy dx |
                 (a + b) tan\A - mu      (x - 4 mu t)/            // \       \

              (1/2) /             (1/2)    /      (1/2)             \\\\     /
         12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//||     |
  a[0] - -------------------------------------------------------------|| + b |
                                /      (1/2)             \            ||     |
                     (a + b) tan\A - mu      (x - 4 mu t)/            //     \

   2 /            (1/2) /             (1/2)    /      (1/2)             \\\\ /
  d  |       12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//|| |
  -- |a[0] - -------------------------------------------------------------|| |
     |                              /      (1/2)             \            || |
     \                   (a + b) tan\A - mu      (x - 4 mu t)/            // \

      /            (1/2) /             (1/2)    /      (1/2)             \\\\
   d  |       12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//||
  --- |a[0] - -------------------------------------------------------------||
   dy |                              /      (1/2)             \            ||
      \                   (a + b) tan\A - mu      (x - 4 mu t)/            //

     / 4 /            (1/2) /             (1/2)    /      (1/2)             \\
     |d  |       12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//
   + |-- |a[0] - -------------------------------------------------------------
     |   |                              /      (1/2)             \            
     \   \                   (a + b) tan\A - mu      (x - 4 mu t)/            

  \\
  ||
  ||
  ||
  //
> value(%);
                       /                                 2\
              3        |       /      (1/2)             \ |
         96 mu  lambda \1 + tan\A - mu      (x - 4 mu t)/ /
         --------------------------------------------------
                               a + b                       

                                                                2   
                            /                                 2\    
                   3        |       /      (1/2)             \ |    
              96 mu  lambda \1 + tan\A - mu      (x - 4 mu t)/ /    
            - --------------------------------------------------- +
                                                         2          
                               /      (1/2)             \           
                    (a + b) tan\A - mu      (x - 4 mu t)/           

                                                  /             
                                                  |             
                             1                    |     (5/2) /
           -------------------------------------- \96 mu      \1
                                                3               
                      /      (1/2)             \                
           (a + b) tan\A - mu      (x - 4 mu t)/                

                       (1/2)    /      (1/2)             \\
            + lambda mu      tan\A - mu      (x - 4 mu t)//

                                               2\   
           /                                 2\ |   
           |       /      (1/2)             \ | |   
           \1 + tan\A - mu      (x - 4 mu t)/ / / -

                                                 /             
                             1                   |     (5/2) /
           ------------------------------------- \96 mu      \1
                      /      (1/2)             \               
           (a + b) tan\A - mu      (x - 4 mu t)/               

                                                            /
                       (1/2)    /      (1/2)             \\ |
            + lambda mu      tan\A - mu      (x - 4 mu t)// \1

                                           2\\
                 /      (1/2)             \ ||
            + tan\A - mu      (x - 4 mu t)/ //
> simplify(%);
Error, (in simplify/tools/_zn) too many levels of recursion
>

 

hi every one, i want to plot an indefinite integral  , it is some what complex and maple can not compute the answer, ( but numeric integration can be computed) , but we want to plot the output, what should we do ? tnx for help in advance

corrected.mw

how can we compute wighted norm of a matrix or a vector in maple? 


``

How can I convert the result (2) to equal to the trigonometric identity (kw/s^2)*tanh(a*s/2)?

``

g := kw*piecewise(t < a, t, t < 2*a, 2*a-t)

kw*piecewise(t < a, t, t < 2*a, 2*a-t)

(1)

simplify((int(exp(-s*t)*g, t = 0 .. a)+int(exp(-s*t)*g, t = a .. 2*a))/(1-exp(-2*a*s)))

-(exp(-a*s)-1)*kw/((exp(-a*s)+1)*s^2)

(2)

``


Download trigonometric_id.mw

 

this equation is complicated

how to dsolve for this equation for function f ?

f(t,x,diff(x,t)) - f(t,x,p) - (diff(x,t)-p)*diff(f(t,x,p), p) = tan(t)
 

First 921 922 923 924 925 926 927 Last Page 923 of 2215