Question: another problem with integral

another problem with itegral, again intergal is getting unevaluated answers or folated ( infinity )
what should i do ?

``

``

restart

with(LinearAlgebra):

Digits := 30;

30

(1)

``

N := 8;

8

 

proc (x, s) options operator, arrow; exp(x*s) end proc

 

proc (x) options operator, arrow; exp(2*x)+(exp(x*(x+2))-exp(-x-2))/(x+2) end proc

(2)

alpha := -1/2;

-1/2

 

-1/2

(3)

for n from 0 to N+1 do J[n] := unapply(simplify((-1)^n*(1-x)^(-alpha)*(1+x)^(-beta)*(diff((1-x)^(n+alpha)*(1+x)^(n+beta), [`$`(x, n)]))/(2^n*factorial(n))), x) end do;

proc (x) options operator, arrow; 1 end proc

 

proc (x) options operator, arrow; (1/2)*x end proc

 

proc (x) options operator, arrow; (3/4)*x^2-3/8 end proc

 

proc (x) options operator, arrow; (5/4)*x^3-(15/16)*x end proc

 

proc (x) options operator, arrow; (35/16)*x^4-(35/16)*x^2+35/128 end proc

 

proc (x) options operator, arrow; (315/256)*x+(63/16)*x^5-(315/64)*x^3 end proc

 

proc (x) options operator, arrow; (231/32)*x^6-231/1024-(693/64)*x^4+(2079/512)*x^2 end proc

 

proc (x) options operator, arrow; -(3003/2048)*x+(429/32)*x^7-(3003/128)*x^5+(3003/256)*x^3 end proc

 

proc (x) options operator, arrow; (6435/256)*x^8+6435/32768-(6435/128)*x^6+(32175/1024)*x^4-(6435/1024)*x^2 end proc

 

proc (x) options operator, arrow; (109395/65536)*x+(12155/256)*x^9-(109395/1024)*x^7+(328185/4096)*x^5-(182325/8192)*x^3 end proc

(4)

u := unapply(exp(2*x), x);

proc (x) options operator, arrow; exp(2*x) end proc

(5)

for i from 0 to N do phi[i] := J[i](x) end do

1

 

(1/2)*x

 

(3/4)*x^2-3/8

 

(5/4)*x^3-(15/16)*x

 

(35/16)*x^4-(35/16)*x^2+35/128

 

(315/256)*x+(63/16)*x^5-(315/64)*x^3

 

(231/32)*x^6-231/1024-(693/64)*x^4+(2079/512)*x^2

 

-(3003/2048)*x+(429/32)*x^7-(3003/128)*x^5+(3003/256)*x^3

 

(6435/256)*x^8+6435/32768-(6435/128)*x^6+(32175/1024)*x^4-(6435/1024)*x^2

(6)

w1 := (1-x)^alpha*(1+x)^beta;

1/((1-x)^(1/2)*(1+x)^(1/2))

(7)

for j from 0 to N do S[j] := simplify(evalf(int(k(x, s)*subs(x = s, phi[j]), s = -1 .. x))) end do;

(-1.*exp(-1.*x)+1.*exp(x^2))/x

 

.5*(exp(x^2)*x^2+exp(-1.*x)*x+exp(-1.*x)-exp(x^2))/x^2

 

((.75*x^4-1.875*x^2+1.5)*exp(x^2)-.375*(x+2.)^2*exp(-1.*x))/x^3

 

((1.25*x^6-4.6875*x^4+8.4375*x^2-7.5)*exp(x^2)+(.3125*x^3+2.8125*x^2+7.5*x+7.5)*exp(-1.*x))/x^4

 

((2.1875*x^8-10.9375*x^6+30.8984375*x^4-56.875*x^2+52.5)*exp(x^2)+(-.2734375*x^4-4.375*x^3-21.875*x^2-52.5*x-52.5)*exp(-1.*x))/x^5

 

((3.9375*x^10-24.609375*x^8+94.74609375*x^6-267.01171875*x^4+502.03125*x^2-472.5)*exp(x^2)+(.24609375*x^5+6.15234375*x^4+49.21875*x^3+206.71875*x^2+472.5*x+472.5)*exp(-1.*x))/x^6

 

((7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/x^7

 

((13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.75537109375*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/x^8

 

((25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.315521240234375*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/x^9

(8)

A := Matrix(N+1, N+1):

for i from 0 to N do for j from 0 to N do A[i+1, j+1] := evalf(Int(phi[i]*phi[j]*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do end do;

A

Matrix([[3.14159265358979323846264338328, 0., 0.111111111111111111111111111111e-32, 0., -0.333333333333333333333333333333e-32, 0., -0.173333333333333333333333333333e-31, 0., -0.291851851851851851851851851852e-30], [0., .392699081698724154807830422910, 0., 0.370370370370370370370370370370e-33, 0., -0.370370370370370370370370370370e-33, 0., -0.718518518518518518518518518519e-32, 0.], [0.111111111111111111111111111111e-32, 0., .220893233455532337079404612887, 0., 0.407407407407407407407407407407e-33, 0., 0.666666666666666666666666666667e-32, 0., 0.966666666666666666666666666667e-31], [0., 0.370370370370370370370370370370e-33, 0., .153398078788564122971808758949, 0., 0.740740740740740740740740740741e-33, 0., 0.128888888888888888888888888889e-31, 0.], [-0.333333333333333333333333333333e-32, 0., 0.407407407407407407407407407407e-33, 0., .117445404072494406650291081070, 0., -0.429629629629629629629629629630e-32, 0., -0.459259259259259259259259259259e-31], [0., -0.370370370370370370370370370370e-33, 0., 0.740740740740740740740740740741e-33, 0., 0.951307772987204693867357756671e-1, 0., -0.135555555555555555555555555556e-31, 0.], [-0.173333333333333333333333333333e-31, 0., 0.666666666666666666666666666667e-32, 0., -0.429629629629629629629629629630e-32, 0., 0.799362781468415055263543670536e-1, 0., 0.157777777777777777777777777778e-31], [0., -0.718518518518518518518518518519e-32, 0., 0.128888888888888888888888888889e-31, 0., -0.135555555555555555555555555556e-31, 0., 0.689246479939602777242545307758e-1, 0.], [-0.291851851851851851851851851852e-30, 0., 0.966666666666666666666666666667e-31, 0., -0.459259259259259259259259259259e-31, 0., 0.157777777777777777777777777778e-31, 0., 0.605783039009416503435830836897e-1]])

(9)

B := Matrix(N+1, N+1):

for j from 0 to N do for i from 0 to N do B[i+1, j+1] := evalf(Int(simplify(phi[i]*S[j]*w1), x = -1 .. 1, epsilon = 0.1e-5), 15) end do end do;

B := Matrix(B)

B := Matrix(9, 9, {(1, 1) = 3.41340669637960, (1, 2) = -.219853801558141, (1, 3) = -.371445167328337, (1, 4) = -0.940736800940411e-2, (1, 5) = -0.845889943042008e-1, (1, 6) = 0.334727115780295e-1, (1, 7) = -0.257221402047336e84, (1, 8) = Float(infinity), (1, 9) = Float(undefined), (2, 1) = .765483256689808, (2, 2) = .141014141031686, (2, 3) = -.165532642864785, (2, 4) = -0.499428359428865e-1, (2, 5) = -0.73434901130578e-2, (2, 6) = -0.111757807839544e-1, (2, 7) = 0.123803381671991e68, (2, 8) = Float(undefined), (2, 9) = Float(-infinity), (3, 1) = 0.515972557667626e-1, (3, 2) = .125811948358948, (3, 3) = 0.408759073542022e-2, (3, 4) = -0.716662760034337e-1, (3, 5) = -0.51685004360437e-2, (3, 6) = 0.716801959003042e67, (3, 7) = Int((43.3125*(2.*x^2-1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+43.3125*(2.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (3, 8) = Float(-infinity), (3, 9) = Float(infinity), (4, 1) = 0.899030920810901e-1, (4, 2) = 0.21384118669396e-2, (4, 3) = 0.393313755295959e-1, (4, 4) = -0.17596837269261e-3, (4, 5) = -0.341293873201944e-1, (4, 6) = -0.107499338429209e52, (4, 7) = 0.188236331912532e46, (4, 8) = Float(-infinity), (4, 9) = Int(0.625000000000000e-1*((-15202687.5+502.73437500*x^18-5404.39453125*x^16+38584.8632812500*x^14-227832.934570312*x^12+1124337.93640137*x^10-4485461.88125610*x^8+13690902.3925781*x^6-29149795.8984375*x^4+36015890.625*x^2)*exp(x^2)+5.*(4.*x^2-3.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (5, 1) = 0.463651486782722e-3, (5, 2) = 0.157757505144122e-1, (5, 3) = 0.7529674755144e-4, (5, 4) = 0.205695133452456e-1, (5, 5) = 0.323627840089429e50, (5, 6) = -0.194229780735106e-1, (5, 7) = Int((31.58203125*(8.*x^4-8.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+31.58203125*(8.*x^4-8.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (5, 8) = Float(infinity), (5, 9) = Float(-infinity), (6, 1) = 0.63086454697723e-2, (6, 2) = 0.148539925067e-4, (6, 3) = 0.678853225186884e-2, (6, 4) = 0.10778334378e-5, (6, 5) = 0.131282639565718e-1, (6, 6) = -0.271179086613e-5, (6, 7) = -0.124971422339580e-1, (6, 8) = -0.810764520616245e86, (6, 9) = 0.973719186742316e103, (7, 1) = 0.225892591375e-5, (7, 2) = 0.119535935984917e-2, (7, 3) = 0.47254024736e-6, (7, 4) = 0.406635846209016e-2, (7, 5) = -0.353102865787386e29, (7, 6) = 0.914224761911803e-2, (7, 7) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (7, 8) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (7, 9) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^9), x = -1. .. 1.), (8, 1) = 0.340365610524644e-3, (8, 2) = 0.5813755404e-7, (8, 3) = 0.59941816605747e-3, (8, 4) = 0.1233441019e-7, (8, 5) = 0.275221040025479e-2, (8, 6) = -0.804784322e-8, (8, 7) = -0.187505962866890e33, (8, 8) = Int(0.488281250000000e-3*(429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (8, 9) = Int(0.488281250000000e-3*(429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (9, 1) = 0.6793714722e-8, (9, 2) = 0.68406690337078e-4, (9, 3) = 0.1624492831e-8, (9, 4) = 0.386156856246160e-3, (9, 5) = 0.815546544069708e28, (9, 6) = -0.277132564813689e67, (9, 7) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (9, 8) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (9, 9) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^9), x = -1. .. 1.)})

(10)

G := Vector(N+1):

for i from 0 to N do G[i+1] := evalf(Int(phi[i]*g(x)*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do;

12.1371438004283064513879002531

 

4.46097069166807099930513349705

 

1.64462130209908212771492915391

 

.558865818865511551008391285165

 

.171719662671619385727054996451

 

0.517117975778639694922219536331e-1

 

0.149941760016965250201187504967e-1

 

0.424140250877931274184205530350e-2

 

0.114813711532765772695860143813e-2

(11)

G[1]

12.1371438004283064513879002531

(12)

C := simplify(Matrix(A+B))

C := Matrix(9, 9, {(1, 1) = 6.55499934996939323846264338328, (1, 2) = -.219853801558141, (1, 3) = -.371445167328337, (1, 4) = -0.940736800940411e-2, (1, 5) = -0.845889943042008000000000000000e-1, (1, 6) = 0.334727115780295e-1, (1, 7) = -0.257221402047336e84, (1, 8) = Float(infinity), (1, 9) = Float(undefined), (2, 1) = .765483256689808, (2, 2) = .533713222730410154807830422910, (2, 3) = -.165532642864785, (2, 4) = -0.499428359428865e-1, (2, 5) = -0.73434901130578e-2, (2, 6) = -0.111757807839544e-1, (2, 7) = 0.123803381671991e68, (2, 8) = Float(undefined), (2, 9) = Float(-infinity), (3, 1) = 0.515972557667626000000000000000e-1, (3, 2) = .125811948358948, (3, 3) = .224980824190952557079404612887, (3, 4) = -0.716662760034337e-1, (3, 5) = -0.516850043604370000000000000000e-2, (3, 6) = 0.716801959003042e67, (3, 7) = 0.666666666666666666666666666667e-32+43.3125*(Int(((-45.+.1250*x^14-1.00000*x^12+5.03906250*x^10-19.679687500*x^8+58.337890625*x^6-119.3203125*x^4+137.25*x^2)*exp(x^2)+(2.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (3, 8) = Float(-infinity), (3, 9) = Float(infinity), (4, 1) = 0.899030920810901e-1, (4, 2) = 0.213841186693960000000000000000e-2, (4, 3) = 0.393313755295959e-1, (4, 4) = .153222110415871512971808758949, (4, 5) = -0.341293873201944e-1, (4, 6) = -0.107499338429209e52, (4, 7) = 0.188236331912532e46, (4, 8) = Float(-infinity), (4, 9) = 0.3125e-1*(Int(((-30405375.+1005.46875*x^18-10808.7890625*x^16+77169.7265625*x^14-455665.869140624*x^12+2248675.87280274*x^10-8970923.7625122*x^8+27381804.7851562*x^6-58299591.796875*x^4+72031781.25*x^2)*exp(x^2)+(-7.855224609375*x^10-502.734375*x^9-10551.53045654296875*x^8-126312.01171875*x^7-987495.99609375*x^6-5213858.203125*x^5-18075814.453125*x^4-36558843.75*x^3-26423718.75*x^2+30405375.*x+30405375.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (5, 1) = 0.463651486782721999999999999997e-3, (5, 2) = 0.157757505144122e-1, (5, 3) = 0.752967475514400000000000000004e-4, (5, 4) = 0.205695133452456e-1, (5, 5) = 0.323627840089429e50, (5, 6) = -0.194229780735106e-1, (5, 7) = -0.429629629629629629629629629630e-32+31.58203125*(Int(((8.*x^4-8.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(8.*x^4-8.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (5, 8) = Float(infinity), (5, 9) = Float(-infinity), (6, 1) = 0.63086454697723e-2, (6, 2) = 0.148539925066999999999999999996e-4, (6, 3) = 0.678853225186884e-2, (6, 4) = 0.107783343780000000000000000074e-5, (6, 5) = 0.131282639565718e-1, (6, 6) = 0.951280655078543393867357756671e-1, (6, 7) = -0.124971422339580e-1, (6, 8) = -0.810764520616245e86, (6, 9) = 0.973719186742316e103, (7, 1) = 0.225892591374999999999999998267e-5, (7, 2) = 0.119535935984917e-2, (7, 3) = 0.472540247360000000000000006667e-6, (7, 4) = 0.406635846209016e-2, (7, 5) = -0.353102865787386e29, (7, 6) = 0.914224761911803e-2, (7, 7) = 0.799362781468415055263543670536e-1+26.05517578125*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (7, 8) = .11279296875*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(26.8125*x^14-234.609375*x^12+1384.1953125*x^10-6642.3779296875*x^8+25481.5107421876*x^6-73338.890625*x^4+140765.625*x^2-135135.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(.4189453125*x^7+20.5283203125*x^6+328.453125*x^5+2956.078125*x^4+16891.875*x^3+61936.875*x^2+135135.*x+135135.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (7, 9) = 0.157777777777777777777777777778e-31+1.24072265625*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(4.5703125*x^16-45.703125*x^14+316.494140625*x^12-1833.837890625*x^10+8845.8755493164*x^8-34142.51953125*x^6+98855.859375*x^4-190856.25*x^2+184275.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(-0.3570556640625e-1*x^8-2.28515625*x^7-47.98828125*x^6-575.859375*x^5-4524.609375*x^4-24131.25*x^3-85556.25*x^2-184275.*x-184275.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^9), x = -1. .. 1.)), (8, 1) = 0.340365610524644e-3, (8, 2) = 0.581375540399999999999999928148e-7, (8, 3) = 0.59941816605747e-3, (8, 4) = 0.123344101900000000000000128889e-7, (8, 5) = 0.275221040025479e-2, (8, 6) = -0.804784322000000000000001355556e-8, (8, 7) = -0.187505962866890e33, (8, 8) = 0.689246479939602777242545307758e-1+.104736328125*(Int(((64.*x^6-112.*x^4+56.*x^2-7.)*(26.8125*x^14-234.609375*x^12+1384.1953125*x^10-6642.3779296875*x^8+25481.5107421876*x^6-73338.890625*x^4+140765.625*x^2-135135.)*exp(x^2)+(64.*x^6-112.*x^4+56.*x^2-7.)*(.4189453125*x^7+20.5283203125*x^6+328.453125*x^5+2956.078125*x^4+16891.875*x^3+61936.875*x^2+135135.*x+135135.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (8, 9) = 1.152099609375*(Int(((64.*x^6-112.*x^4+56.*x^2-7.)*(4.5703125*x^16-45.703125*x^14+316.494140625*x^12-1833.837890625*x^10+8845.8755493164*x^8-34142.51953125*x^6+98855.859375*x^4-190856.25*x^2+184275.)*exp(x^2)+(64.*x^6-112.*x^4+56.*x^2-7.)*(-0.3570556640625e-1*x^8-2.28515625*x^7-47.98828125*x^6-575.859375*x^5-4524.609375*x^4-24131.25*x^3-85556.25*x^2-184275.*x-184275.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (9, 1) = 0.679371472199999999999970814815e-8, (9, 2) = 0.68406690337078e-4, (9, 3) = 0.162449283100000000000009666667e-8, (9, 4) = 0.386156856246160e-3, (9, 5) = 0.815546544069708e28, (9, 6) = -0.277132564813689e67, (9, 7) = 0.157777777777777777777777777778e-31+22.6819610595703125*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (9, 8) = 0.196380615234375e-1*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(134.0625*x^14-1173.046875*x^12+6920.9765625*x^10-33211.8896484375*x^8+127407.553710938*x^6-366694.453125*x^4+703828.125*x^2-675675.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(2.0947265625*x^7+102.6416015625*x^6+1642.265625*x^5+14780.390625*x^4+84459.375*x^3+309684.375*x^2+675675.*x+675675.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (9, 9) = 0.605783039009416503435830836897e-1+.2160186767578125*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(22.8515625*x^16-228.515625*x^14+1582.470703125*x^12-9169.189453125*x^10+44229.377746582*x^8-170712.59765625*x^6+494279.296875*x^4-954281.25*x^2+921375.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.17852783203125*x^8-11.42578125*x^7-239.94140625*x^6-2879.296875*x^5-22623.046875*x^4-120656.25*x^3-427781.25*x^2-921375.*x-921375.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^9), x = -1. .. 1.))})

(13)

C1 := MatrixInverse(C)

Warning,  computation interrupted

 

``

t := C1.G

s[u] := add(subs(theta = sols[l+1], ((x+1)*(1/2))*k(x, ss(x, theta)))*u(ss(x, sols[l+1])), l = 0 .. N)

U := unapply(add(t[j+1].phi[j], j = 0 .. N), x)

``

with(numapprox)

E := infnorm(abs(u(x)-U(x)), x = -1 .. 1)

``

E[1] := (int((u(x)-U(x))^2, x = -1 .. .1))^(1/2)

``

plot([U(x), u(x)], x = -1 .. 1)

 

``

NULL

 

Download chebichef_cont.mw

Please Wait...